II. Immunology and Inflammation

4:45 PM

Too Much of a Good Thing? Considering Gene-Environment Interactions in Health and Disease

Lee Niswander, Ph.D. – Chair of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder

Too much of a good thing? Considering gene-environment interactions in health and disease.

Lee Niswander, Ph.D. Univ of Colorado Boulder Univ of Colorado Medical Campus Children's Hospital Colorado

Developmental Biology to understand the causes of birth defects

Developmental Origins of Health and Disease

Neural Tube Defects (spinal cord/brain)

NTDs = Failure of Neural Tube Closure ~1:1000 births worldwide

Spina Bifida: failure of lower neural tube to close

- Increased mortality
- Life-long morbidities
 - Neurologic/Neurosurgical
 - Urologic
 - Orthopedic
 - Psychological

Anencephaly: failure of cranial neural tube to close

Lethal

Early Brain and Spinal Cord Development: Neural Tube Closure

Early Brain and Spinal Cord Development: Neural Tube Closure

Ρ

Coordinate: Patterning Growth Differentiation Cell death Cell movements Cell architecture Tissue interactions Physical forces

Early brain and spinal cord formation

Week 3-4: Before woman knows she is pregnant

Timing of closure is critical

Best treatment for NTD is to close the defect...surgery (postnatal or fetal)

Prevention

Strategies for Prevention: Gene-Environment Interactions

Environmental risk factors for NTDs

- Teratogens:
 - valproic acid, carbamazepine, trimethoprim
- Maternal obesity
- Maternal diabetes/hyperglycemia
- Maternal hyperthermia
- Maternal nutrient deficiencies:
 - Folic acid, zinc, iron

Benefits of Folic Acid Fortification

- Folic acid studies began in 1960s, landmark random clinical trials in 1990s
- Mandatory U.S. grain supply fortification started January 1998
- ~35% decrease in NTDs in the U.S.

Folic acid fortification has helped many countries reduce their number of neural tube defects – birth defects of the brain and spine.

- How does folic acid prevent NTDs?
- Which mutations/gene pathways benefit from folic acid?

Folic acid is needed for the production of purines, thymidylate, and SAM

Is there a strong correlation between folate pathway mutants and NTDs? NO

How does folic acid act during neural tube closure?

Folate deficient

Cell proliferation and survival

How does folic acid act during neural tube closure?

Folate deficient

Cell proliferation and survival

Methylation changes? Epigenetic regulation?

supplementation

Chromatin modifying enzymes and neural tube defects

Protein	Function
Baf155	Chromatin remodeling
Baf47	Chromatin remodeling
Brg1	ATPase of chromatin remodeling
Nap 1/2	Histone Chaperone- nucleosome
	assembly
CBP	HAT/Transcriptional
	activation
P300	HAT/Transcriptional
	activation
GCN 5	Histone Acetyltransferase
HDAC4	Histone Deacetylase
Sirt1	Deacetylase
Brd2	Histone Modification

Copp and Greene, J Pathology 2009 Harris and Juriloff, Birth Defects Res 2010

Valproic acid: histone deacetylase inhibitor

Crabtree et al 2010

How does folic acid act during neural tube closure?

Genetics of neural tube closure using mouse models

• What are the genes involved?

Mouse studies Genetic Screens

- How do these genes work?
- What goes wrong to cause neural tube defects?

Niswander lab contributions to understanding neural tube closure

Patterning/cilia

Ift88 (null & hypomorph) Ift52 3poly C2cd3 (null & hypomorph) Inturned (null & hypomorph) Fuzzy Mks1 Ccdc40 PigN

Pgap1 Snx3 Tmem132a

Migration

Phactr4

Tissue Interactions

Hectd1 Baf155

Environmental Factors

Folic acid Iron Zinc

Cell adhesion

Grhl2 Frem2 AP2α Ryr1 p38IP (null & hypomorph)

Cell architecture

Shroom3 Grhl3

Proliferation Differentiation

mLin41 Phactr4 Wdr62 Gcn5

Cell specification

Fpn1 Pax3 Zic2

Impacting child health

Mouse models of NTDs

Human NTD genomic information

Fetal surgery Biomaterials, Stem Cells, NTD modeling

Animal models: causative role & genetic interplay

Mouse NTD models to uncover the genetics of responsiveness to folic acid

To better reflect current US folic acid intake:

- Moderate and enriched folic acid diets that correlate with pre- and post-fortification diets
 - Long-term diet over multiple generations

What pathways or cellular functions are responsive?

Additional therapies for folic acid non-responsive NTDs?

Mouse NTD models to uncover the genetics of responsiveness to folic acid

Patterning/cilia

Ift88 (null & hypomorph) Ift52 3poly C2cd3 (null & hypomorph) Inturned (null & hypomorph) Fuzzy Mks1 Ccdc40 PigN

Pgap1 Snx3 Tmem132a

Migration

Phactr4

Tissue Interactions

Hectd1 Baf155

Environmental Factors

Folic acid Iron Zinc

Cell adhesion

Grhl2 Frem2 AP2α Ryr1 p38IP (null & hypomorph)

Cell architecture

Shroom3 Grhl3

Proliferation Differentiation

mLin41 Phactr4 Wdr62 Gcn5

Cell specification

Fpn1 Pax3 Zic2 Low folic acid levels can increase the risk for NTD

Is NTD prevention always due to rescue?

No, early embryonic lethality

Low folic acid levels can increase the risk for NTD

Balance? Might there be a dose that exceeds a beneficial level in the context of genetic mutation?

Unexpected increased NTD risk on enriched folate diet

Can length of exposure affect the outcome? Yes,.... epigenetic?

11 cases Non-responsive

Human Molecular Genetics, 2011

11 cases Non-responsive

Shroom3 short-term FA beneficial

Human Molecular Genetics, 2011

11 cases8 casesNon-responsiveBeneficial response

Human Molecular Genetics, 2011

11 cases8 casesNon-responsiveBeneficial response

3 cases Detrimental response Link to cilia?

Non-responsive

Detrimental response

Moderate folic acid levels are beneficial for cilia mutants

Moderate folic acid levels are beneficial for cilia mutants

Human patient cell lines (primary cilia)

Ependymal flow (multi-ciliated cells in brain ventricles that move CSF)

Moderate folic acid diet

Enriched folic acid diet

Directionality histograms

Ependymal flow (multi-ciliated cells in brain ventricles that move CSF)

Enriched folic acid diet

Ependymal flow (multi-ciliated cells in brain ventricles that move CSF)

Ependymal flow (cilia in brain ventricles that move CSF)

Increased variability in gene expression as a contributor to NTD risk?

The genetics of an individual may determine the appropriate balance in folic acid supplementation

Inconsistent regulation of gene expression as a contributor to NTD risk

Baf155 mutant

ATP-dependent chromatin remodeling complex

Laura Harmacek William Pavan (NIH) Michael Salbaum (Pennington Biomed Res, LA)

variable gene expression

Developmental Neurobiology 2013

Balance? Too MUCH, as well as too little may be problematic

Mutations can shift this balance

Folic acid levels

Is NTD prevention always due to rescue? No, early embryonic lethality

Might some gene mutations and cellular processes benefit from moderate levels of folic acid? Yes, cilia and others?

The genetics of an individual may determine the appropriate balance in folic acid supplementation

Approaches to Understand the Causes of NTDs

Genetics **Forward Genetic Screens** KOMP

Environment Folic Acid Zinc, Iron

Modeling Human NTD Mutations Gleeson (UCSD) Wang (Fudan Univ) Zhang (Beijing)

Dynamic Imaging

Patient iPSCs Maternal-Fetal Center R. Marwan, MD

Lori Bulwith Heather Clancy David Engelhardt Eric Jaffe Binbin Li Huili Li Sofia Pezoa Jing Zhang

Jianfu Chen (Univ of Southern California) Amanda Graf (Nationwide Children's Hospital) Laura Harmacek (National Jewish Health Center) Tae-Hee Kim (Hospital for Sick Kids) Aimin Liu (Penn State Univ) Amber Marean (Univ of CO, Colorado Springs) R'ada Massarwa (Weismann Institute) Juliette Petersen (AAAS Fellow, State Dept) Christina Pyrgaki (Rockefeller Univ Imaging Center) Heather Ray (Univ of Alabama) Carsten Schnatwinkel (Flagship Biosciences) Jonathan Wilde (MIT) Irene Zohn (Children's National Medical Center) Ying Zhang (Harvard Univ)

HHMI HOWARD HUGHES MEDICAL INSTITU

National Institute of Neurological Disorders and Stroke

SCHOOL OF MEDICINE RNA Bioscience Initiative UNIVERSITY OF COLOBADO ANSCHUTZ MEDICAL CAMP

Collaborators Dr. K. Anderson Dr. K. Hadjantonakis Dr. P. Trainor Dr. M. Justice Dr. T. Zhang Dr. H. Wang Dr. J. Gleeson Dr. R. Marwan

Dr. R. Bajpai

