The Host Cancer Interface: Obesity and Diabetes Promote Cancer Development and may Reduce Treatment Efficacy

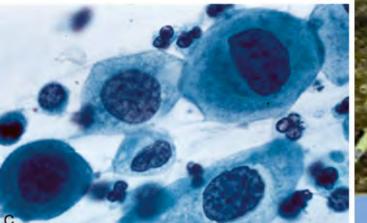
Ann Thor M.D. Todd Professor and Chair Department of Pathology University of Colorado Anschutz Medical Campus

Conflict of Interest

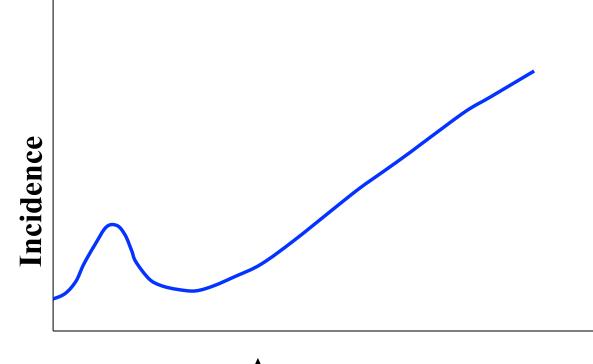
None

Objectives

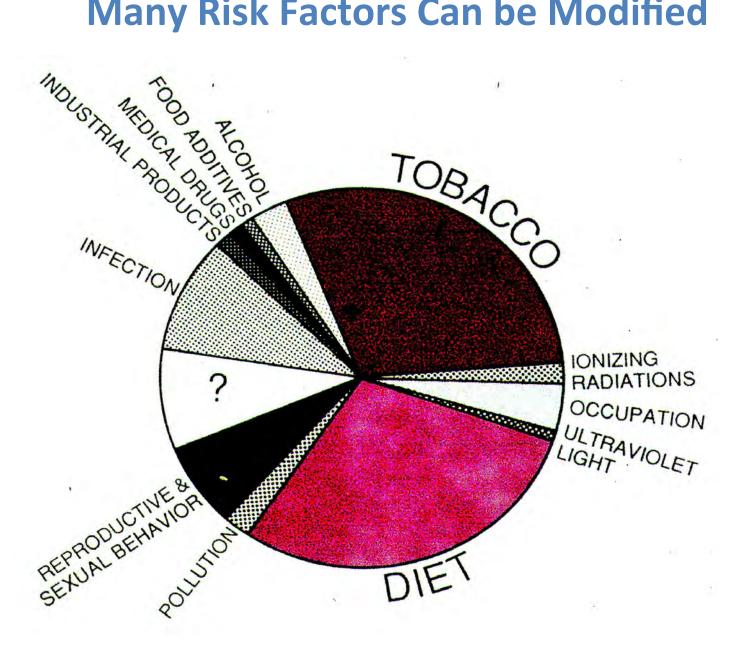
- 1. Discuss host metabolism (obesity and diabetes) as risk and prognostic factors for human cancer.
- 2. Targeting metabolic dysregulation through our treatment of obesity and diabetes, to prevent and treat cancer


Cancer

- Multistep process, often taking years
- Variable subtypes, even for the same organ of origin
- Unrestrained growth
- Inability to undergo cell induced death
- Adaptable through clonal progression
- Ability to invade normal tissues-into the neighborhood
- Ability to spread via vessels-to other organs and sites
- Can send and receive local and distant signals to other cells
- Can evade natural immunity


What does Cancer Look Like?

normal A82-



Lung Cancer

Age a Potent Risk Factor for Cancer

Many Risk Factors Can be Modified

.....is it true?

"Sugar and Fat that's Where it's At"

CD Young and SM Anderson, Br Ca Res 2008

Diabetes, Obesity and Cancer

- Disorders of carbohydrate and lipid metabolism are well recognized risk factors for cardiovascular disease.
- Much less recognized by health professionals and patients, metabolic dysregulation is also a major risk factor for cancer.
- The incidence of TII diabetes and obesity has risen significantly in the US, even in pediatric patients.
 - There are 14 M TII Diabetics, 5 M undiagnosed TII diabetics and 41 M prediabetic adults in the US.
 - Two thirds of the US adult population is overweight. Half are obese.

Cancer Pathogenesis

Endogenous Growth Promotion

- Cytokines, inflammatory factors
- Hyperinsulinemia, IGF
- Hyperglycemia
- Altered Metabolism
- Microbiome
- Hormones

Obesity

Type II Diabetes

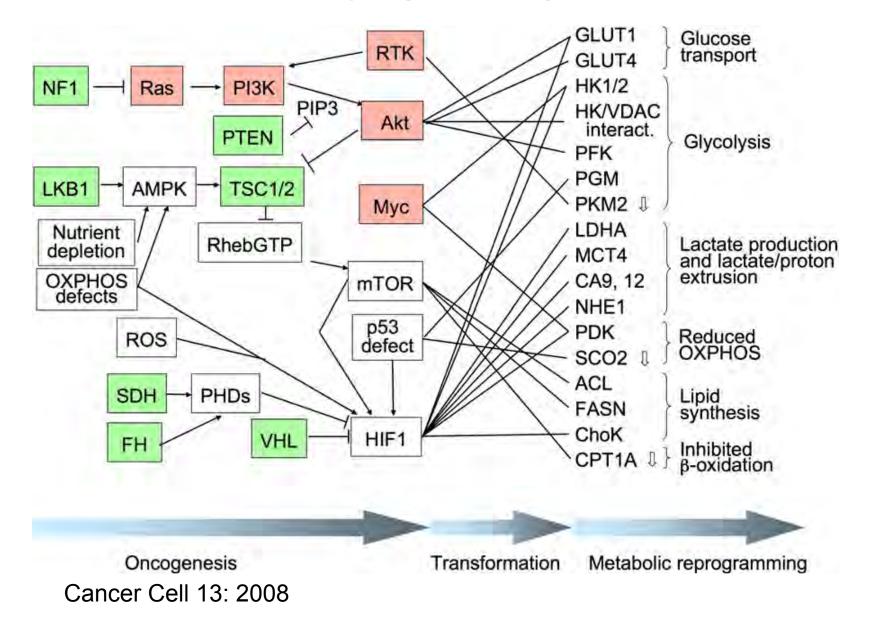
Hyperlipidemia

Altered Immunity

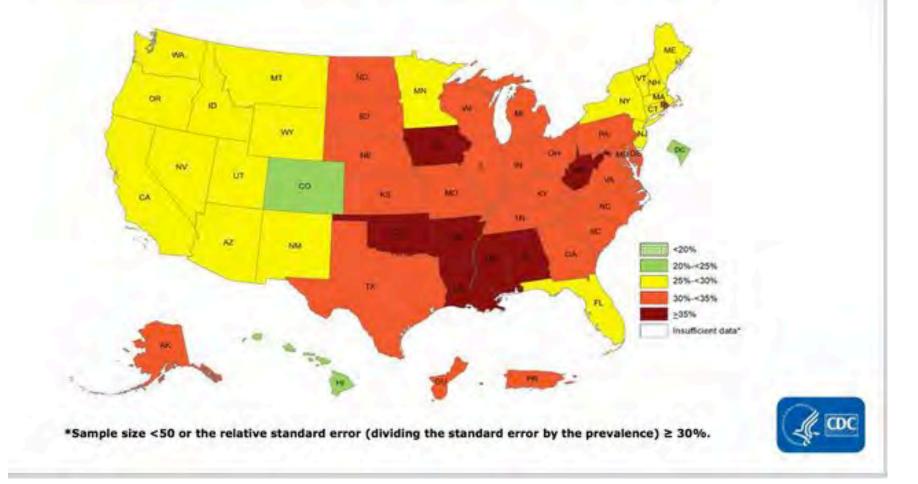
- Wound healing-induction of growth factors, altered environment
- Decreased Immune Surveillance, immunodeficiency

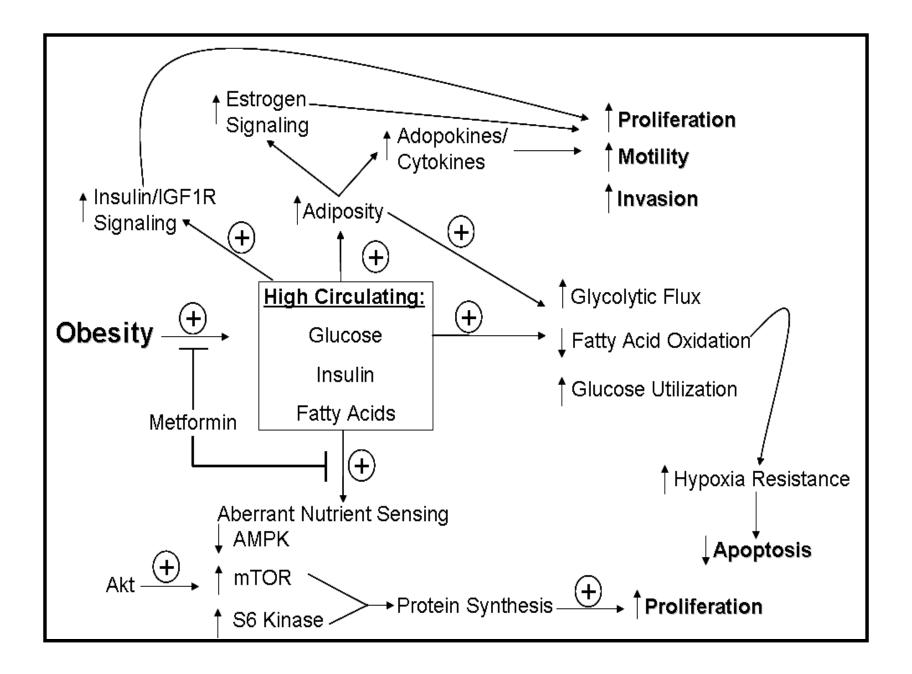
Genetics/Transcriptomics/Epigenetics

- Inherited/somatic alterations, polymorphisms
- Acquired genetic instability, mutation
- Epigenetic changes


Exogenous Agents

- Viral carcinogenesis (HPV, EBV)
- Chemicals
- Radiation
- Hormone like agents
- Dietary factors


Metabolic Reprogramming in Cancer


- Cancer cells reorganize metabolic pathways to augment anabolic reactions...although the mechanisms that foster this shift are complex
- Intermediates of the glycolytic pathway provide building blocks of anabolic pathways that enable growth and proliferation
 - Amino acids
 - Nucleic acids
 - Lipids

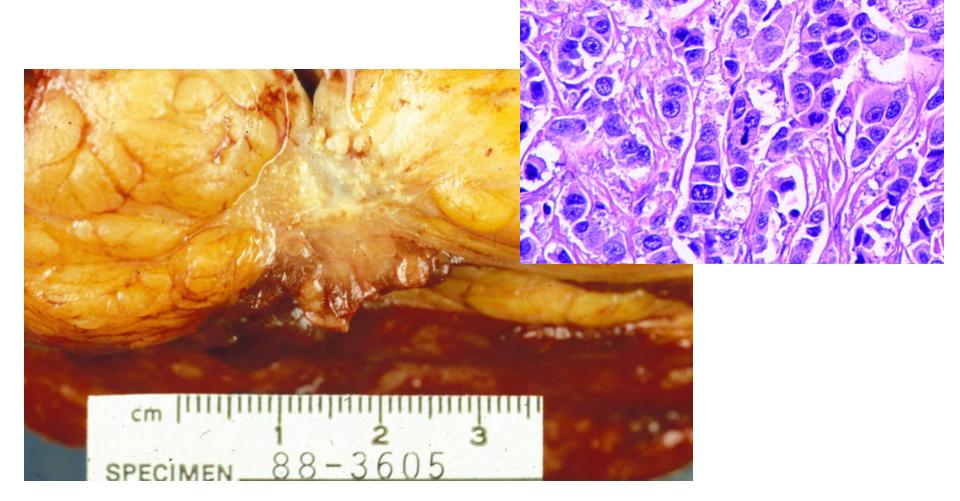
Mechanisms of Cancer Specific Metabolic Reprogramming

Prevalence¹ of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2017

BMI and Cancer Risk: Women

Cancer site and type Number	r of studies	RR (95% CI)	Р	I ²
Endometrium	19 🔶	1.59 (1.50-1.68)	<0.0001	77%
Gallbladder	2	1.59 (1.02-2.47)	0.04	67%
Oesophageal adenocarcinoma	3 -	1.51 (1.31–1.74)	<0.0001	0%
Renal	12	1.34 (1.25-1.43)	<0.0001	45%
Leukaemia	7	1.17 (1.04–1.32)	0.01	80%
Thyroid	3	1.14 (1.06-1.23)	0.001	5%
Postmenopausal breast	31 🔶	1.12 (1.08-1.16)	<0.0001	64%
Pancreas	11	1.12 (1.02-1.22)	0.01	43%
Multiple myeloma	6	1.11 (1.07–1.15)	<0.0001	0%
Colon	19 🔶	1.09 (1.05-1.13)	<0.0001	39%
Non-Hodgkin lymphoma	7	1.07 (1.00-1.14)	0.05	47%
Liver	1	1.07 (0.55-2.08)		
Gastric	5 _	1.04 (0.90-1.20)	0.56	4%
Ovarian	13 🔶	1.03 (0.99-1.08)	0.30	55%
Rectum	14 +	1.02 (1.00-1.05)	0.26	0%
Malignant melanoma	5	0.96 (0.92-1.01)	0.05	0%
Premenopausal breast	20 🗕	0.92 (0.88-0.97)	0.001	39%
Lung	6	0.80 (0.66-0.97)	0.03	84%
Oesophageal squamous	2	0.57 (0.47-0.69)	<0.0001	60%
	0.5 0.8 1.0 1.5	2.0		

Risk ratio (per 5 kg/m² increase)


Renehan et al. Lancet 2008;371:569-78

Obesity: an Independent Risk Factor for Breast Cancer

- The magnitude of risk for obese patients is at least 2 fold.....
- In post-menopausal obese women, estrogen levels are increased 50-100 %
- Obesity is associated with suppressed fatty acid oxidation, making cells more dependent on glucose and promoting aerobic glycolytic capacity...*The Warburg Effect*
- Increases with BMI (3% per 1 kg/m²) post menopausal ER+, PR+ CA
- More profound in patients with a strong family history (5-10 fold)

Breast Cancer and Obesity

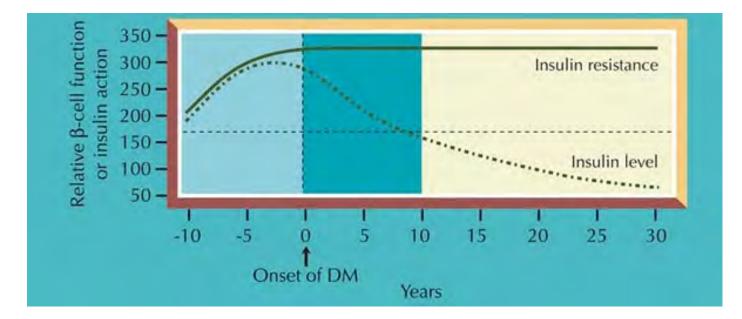
Post-menopausal Caucasian Pre-menopausal Latino and AA

BMI and CANCER RISK: MEN

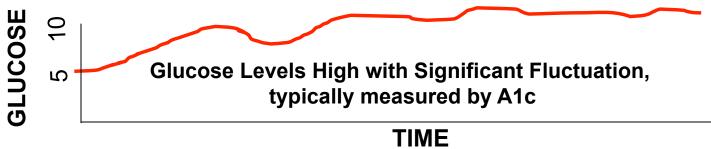
Oesophageal adenocarcinom	a 5		1.52 (1.33–1.74)	<0.0001	24%
Thyroid	4		1.33 (1.04–1.70)	0.02	77%
Colon	22	*	1.24 (1.20-1.28)	<0.0001	21%
Renal	11		1.24 (1.15–1.34)	<0.0001	37%
Liver	4		1.24 (0.95–1.62)	0.12	83%
Malignant melanoma	6		1.17 (1.05–1.30)	0.004	44%
Multiple myeloma	7		1.11 (1.05–1.18)	<0.0001	7%
Rectum	18	+	1.09 (1.06-1.12)	<0.0001	3%
Gallbladder	4		1.09 (0.99–1.21)	0.12	0%
Leukaemia	7		1.08 (1.02-1.14)	0.009	0%
Pancreas	12		1.07 (0.93-1.23)	0.33	70%
Non-Hodgkin lymphoma	6		1.06 (1.03-1.09)	<0.0001	0%
Prostate	27		1.03 (1.00-1.07)	0.11	73%
Gastric	8	-	0.97 (0.88-1.06)	0.49	35%
Lung	11		0.76 (0.70-0.83)	<0.0001	63%
Oesophageal squamous	3		0.71 (0.60-0.85)	<0.0001	49%

Risk ratio (per 5 kg/m² increase)

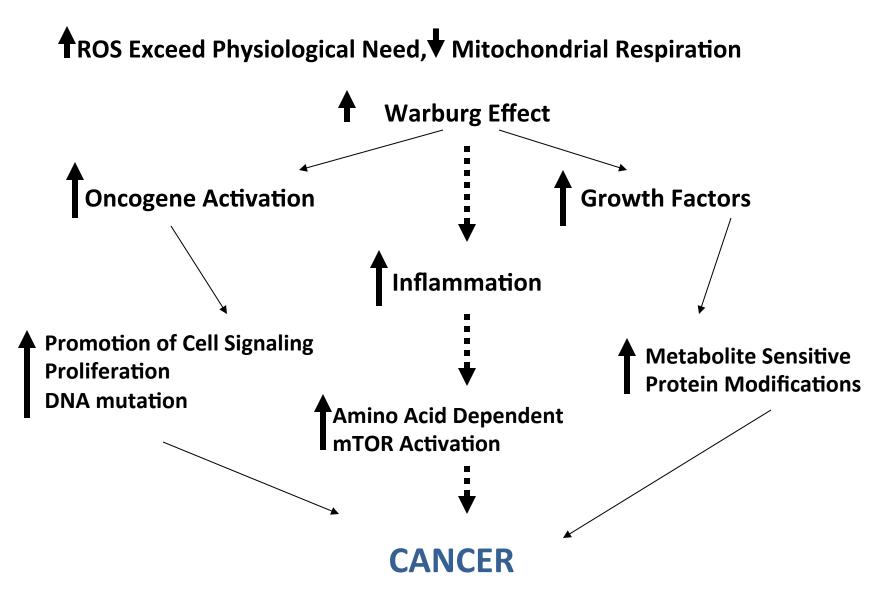
Renehan et al. Lancet 2008;371:569-78


Diabetes and Cancer

"It would appear that either diabetics tend to develop cancer or that cancer patients tend to develop symptoms recognised as diabetic"


- Wilson and Maher Am J Cancer 1932

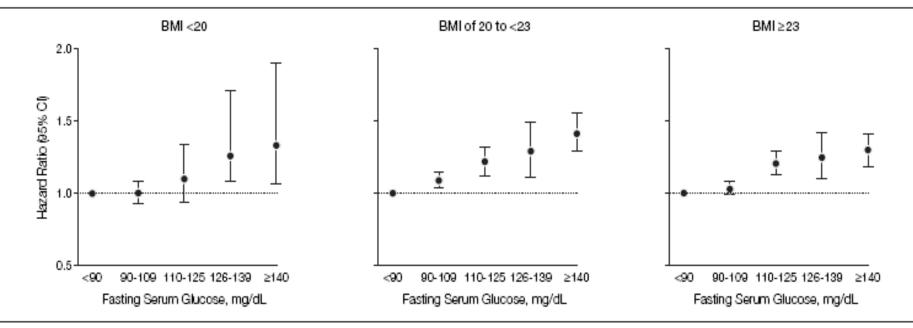
Insulin and Glucose Dysregulation with Type 2 Diabetes


A. Insulin rises over years, then declines with prolonged resistance

B. Glucose fluctuates over years

Nutritional Stress and Cancer

Review: Wellen and Thompson, Mol Cell 40, 2010


Diabetes and Cancer Incidence

Cancer		RR (95% CI)
Liver (EI-Serag et al. 2006)	13 case-control studies	2.50 (1.8-3.5)
	7 cohort studies	2.51 (1.6-3.2)
Pancreas (Huxley et al. 2005)	17 case-control studies	1.94 (1.53-2.46)
	19 cohort studies	1.73 (1.89–1.88)
Kidney ^a (Lindblad <i>et al.</i> 1999, Washio <i>et al.</i> 2007)	1 cohort study	1.50 (1.30-1.70)
	1 cohort study	2.22 (1.04-4.70)
Endometrium (Friberg et al. 2007)	13 case-control studies	2.22 (1.80-2.74)
	3 cohort studies	1.62 (1.21-2.16)
Colon-rectum (Larsson et al. 2005)	6 case-control studies	1.36 (1.23-1.50)
	9 cohort studies	1.29 (1.16-1.43)
Bladder (Larsson et al. 2006)	7 case-control studies	1.37 (1.04–1.80)
	3 cohort studies	1.43 (1.18–1.74)
Non-Hodgkin's lymphoma (Mitri et al. 2008)	5 cohort studies	1.41 (1.07-1.88)
	11 case-control studies	1.12 (0.95–1.31)
Breast (Larsson et al. 2007)	5 case-control studies	1.18 (1.05–1.32)
	15 cohort studies	1.20 (1.11–1.30)
Prostate (Kasper & Giovannucci 2006)	9 case-control studies	0.89 (0.72-1.11)
	10 cohort studies	0.81 (0.71-0.92)

Vigneri et al., Endocrine-Related Cancer 2009; 16 1103–1123

Hyperglycemia and Cancer Mortality

Figure 2. Hazard Ratios for All Cancer Deaths by Fasting Serum Glucose Levels in Korean Men by BMI, 1993-2002

Body mass index (BMI) was calculated as weight in kilograms divided by the square of height in meters. CI indicates confidence interval.

Jee et al. JAMA. 2005;293:194-202

Cancer Risk by Diabetes Treatment over Time

Unadjusted **Adjusted for Confounding Factors** (age, sex, smoking status, prior cancer) 1.00 1.00 Cumulative tumour-free survival 0.99 Cumulative tumour-free survival 0.98-0.98 0.96 0.97-0.94-0.96-Metformin Metformin Sulfonylurea Sulfonylurea 0.92-Sulfonylurea + Metformin 0.95-Sulfonylurea + Metformin Insulin Insulin No Treatment 0.94-0.90 -2 3 2 0 3 Years to event/censor Years to event/censor

Currie et al. Diabetologia 2009; 52:1766-1777

Diabetes and Cancer Prognosis

Table 3. Pooled Hazard Ratios of Long-term, All-Cause Mortality in Cancer Patients With and Without Preexisting Diabetes Mellitus in Selected Cancer Sites

Cancer Site	Studies (Estimates), No.	Total Patients, No.	Patients With Diabetes, No.	Pooled HR (95% CI) ^a	12, %
Endometrial	4 (4)40,42,46,48	2900	429	1.76 (1.34-2.31)	44.3
Breast	4 (4)40,41,43,45	13019	1107 ^b	1.61 (1.46-1.78)	0
Prostate	3 (3)37,40,47	6264	555 ^b	1.51 (0.94-2.43)	47.1
Gastric	3 (3)37,40,50	6200	687 ^b	1.36 (0.92-2.01)	83.6
Colorectal	6 (7)33,34,36,37,39,40	54 740	8028 ^b	1.32 (1.24-1.41)	52.4
Hepatocellular	3 (5)30,37,44	3724	848 ^b	1.30 (0.99-1.70)	68.9
Lung	4 (5)29.37,38,40	11 109	989°	1.15 (0.99-1.34)	47.7
Pancreas	4 (4)28,37,40,49	1681	477 ^b	1.09 (0.70-1.69)	73.4

Abbreviations: CI, confidence interval; HR, hazard ratio.

^aEstimates calculated using a random-effects model. ^bNumber is extrapolated because 1 study did not report prevalence of diabetes.

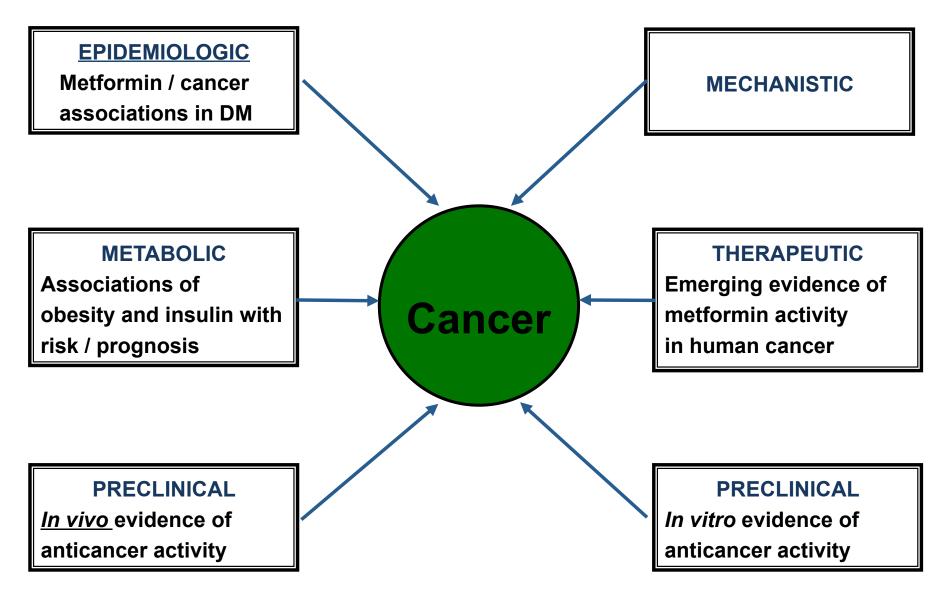
^CNumber is extrapolated because 2 studies did not report prevalence of diabetes.

Barone et al. JAMA. 2008;300(23):2754-2764

Lipid Dysregulation Promotes CA

- High cholesterol and lipid dysregulation are associated with a significant and independent risk of cancer, poor outcomes and treatment resistance
- Two patterns of breast CA risk with lipid dysregulation
 - Premenopausal, TNBC, minority women
 - Post menopausal, ER+, PR+, HER2- in Caucasians

Metformin (Glucophage-Aventis)



Galega officinalis (Goat's rue, French lilac)

- The most commonly drug used worldwide to treat type II and pre-diabetic syndromes
- Oral, low cost agent
- Significant anti-cancer activity
- Extremely low toxicity

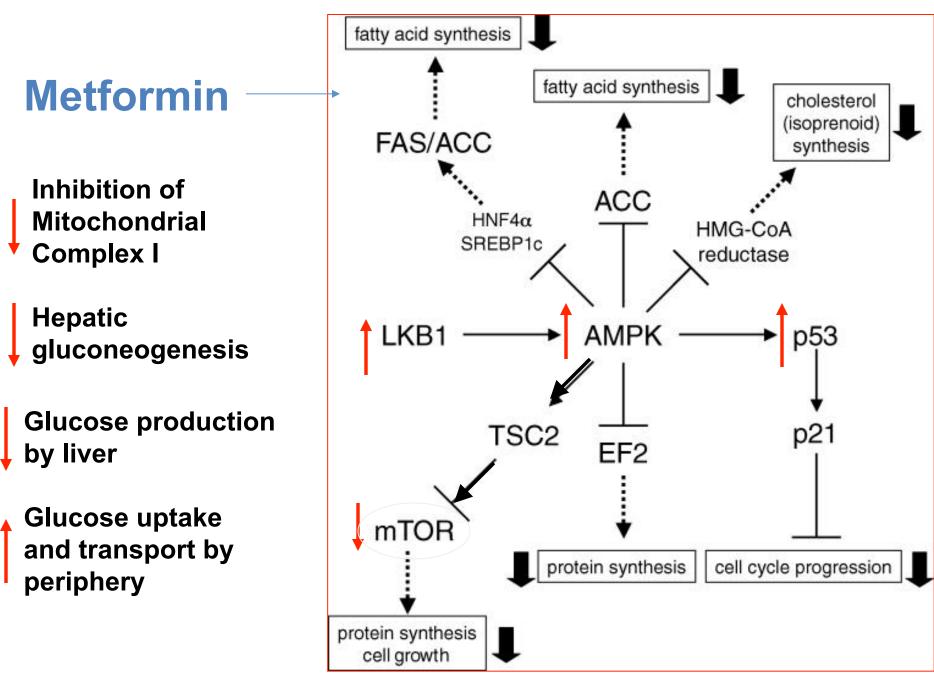
Evidence of Metformin's Anti-Cancer Activity

Not seen with other anti-diabetic agents !

Reduction of Incidence of CA with Metformin

Epithelial Derived Cancers

Breast	Ovary
Prostate	Endometrium
Head and Neck	Liver
Colon	Lung
Pancreas	Brain


Soft Tissue and Bone

Fibrosarcoma

Osteosarcoma

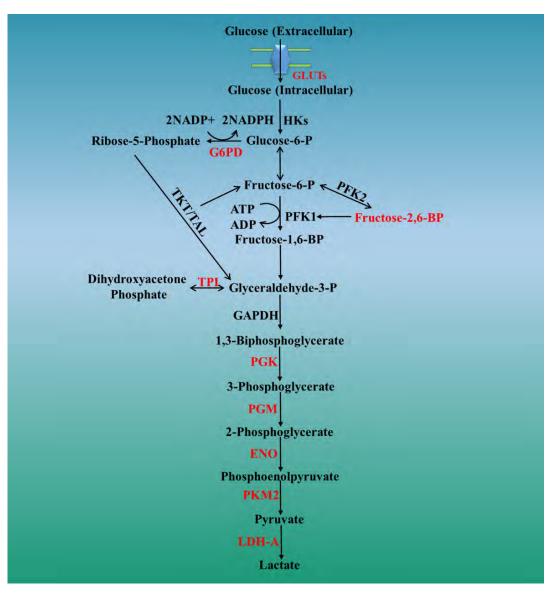
** 125 Clinical trials listed with metformin and CA on ClinicalTrials.gov

 IB Sahra et al. Metformin in Cancer Therapy, *Mol Cancer Ther* 9:2010
Del Barco S et al. Metformin: Multi-faceted Protection Against Cancer Oncotarget 2: 2011
Kasznicki J et al. Metformin in Cancer Prevention and Therapy, *Ann* Transl Med 2: 2014

Owen MR et al, Biochem, 2000

Metformin Has Complex Effects In Vitro and In Vivo

- **†** Cell cycle arrest
- Cell growth
- Protein production (cap dependent translation)
- ↓ Carcinogen induced transformation
- Glycolysis
- **†** Glucose transport
- Mitochondrial respiration, decrease ROS
- Clonogenicity
- Fatty acid synthetase (FAS)
- Stem cell growth
- Apoptosis
 - Autophagy in p53 competent cells

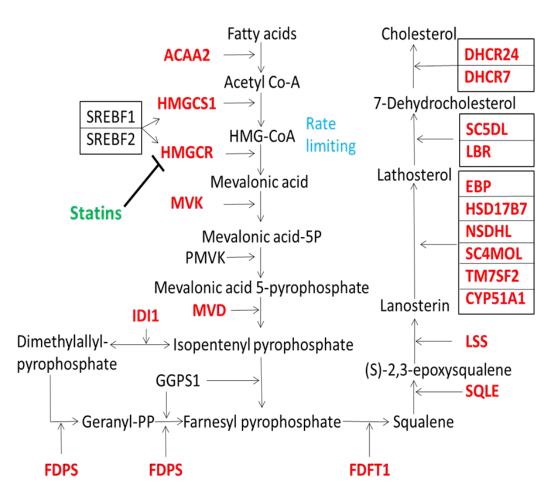

? Angiogenesis

Metformin Acts to Normalize Glucose Metabolism in Cancer

- Downregulation of Glucose Transport Proteins (Gluts 1, 10, 12, 14)
- Downregulation of glucose-6-phosphate transporter, triose phosphate isomerase and 18 other key genes in glucose metabolism
- Downregulation of lactose dehydrogenase (LDH), which is a key enzyme catalyzing conversion of pyruvate to lactate.

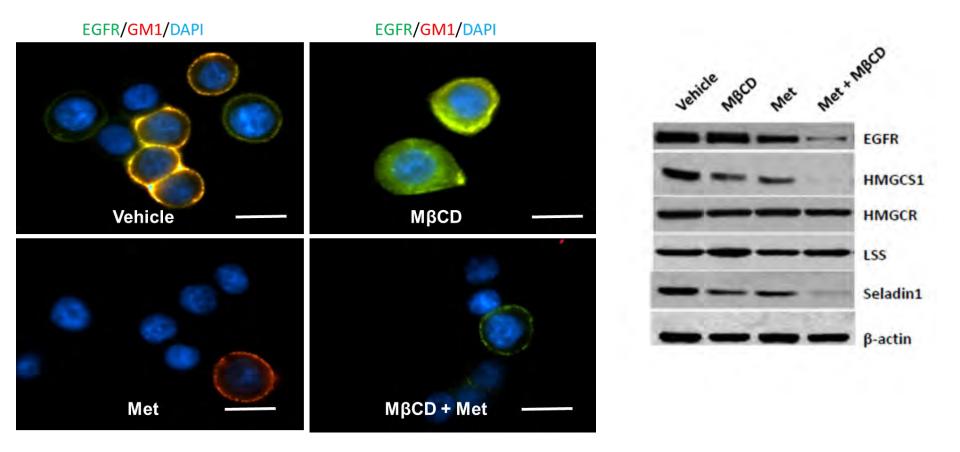
Wahdan-Alaswad RS, Edgerton SM, Salem HS, Thor AD. Metformin Targets Glucose Metabolism in Triple Negative Breast Cancer, J Oncol Transl Res 4: 129. 2018

Metformin Broadly Inhibits Glycolysis

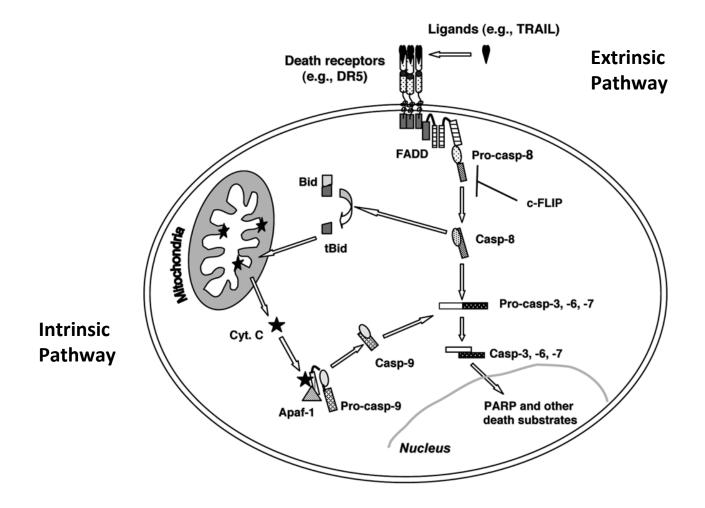


Metformin Targets Aberrant Lipid Metabolism in CA: FASN in TNBC

- FASN critical step in fatty acid synthesis.
- FASN one of most downregulated genes in TNBC Rx metformin
- Hypothesis: FASN downregulation facilitates metformin-induced apoptosis.
- Results: Metformin induction of cell death, proliferation and inhibition of stemness mediated by reduction of fatty acid synthase (FASN) via miRNA-193b


Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM, Thor AD and Richer JK. Metformin-Induced Killing of Triple Negative Breast Cancer Cells is Mediated by Reduction in Fatty Acid Synthase via miRNA-193b *Hormones and Cancer.* 5:374-89, 2014

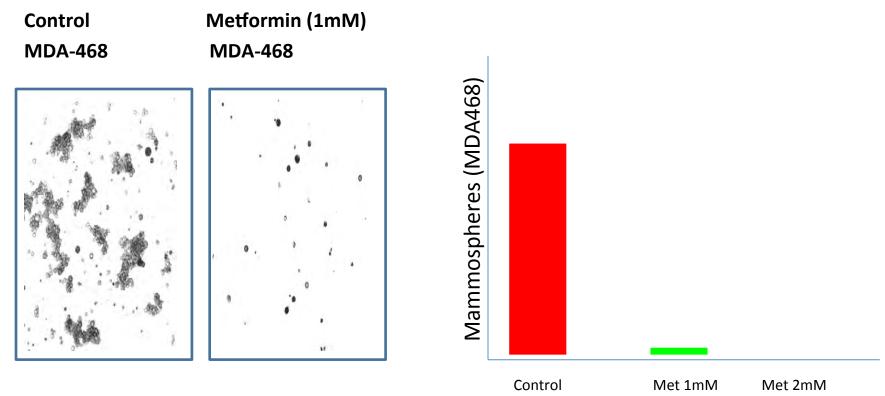
Cholesterol Biosynthesis Targeted by Metformin in TNBC

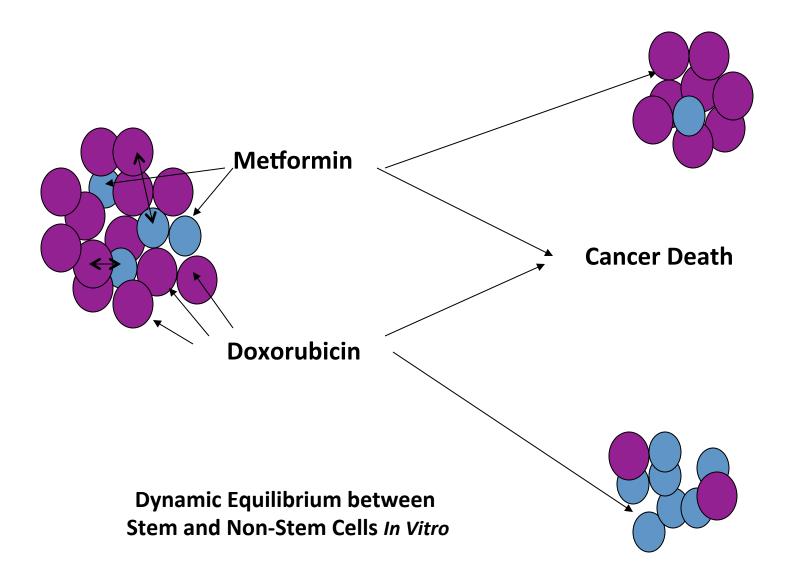

Wahdan- Alaswad et al., Cancer Therapy and Oncology 2018

Metformin Downregulates EGFR and Lipid Raft Stabilization: Enhancing Sensitivity to Tyrosine Kinase Inhibitors

Wahdan-Alaswad RS, Edgerton SM, Salem HS, Thor AD. Metformin targets cholesterol biosynthesis pathway, GM1 lipid raft stabilization, EGFR signaling and proliferation in triple negative breast cancers. Can Therapy Oncol Int J 9:555765 2018

Intrinsic and Extrinsic Pathways of Apoptosis via the Death Receptor TRAIL


Metformin Induces Cell Death via Intrinsic and Extrinsic Pathways of Apoptosis


Liu B, Fan Z, Edgerton SM, Deng X-S, Alimova IN, Lind SE, Thor AD. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. *Cell Cycle*, 8:2031-40, 2009

Metformin Targets Stem Cells

-Metformin selectively kills cancer stem cells/mammospheres

Metformin Provides Improved Survival if Combined with Chemo

Metformin Inhibits Cancer Motility and Metastasis

Moesin: Membrane Organizing Extension Spike Protein

- Cross links plasma membranes and actin-based cytoskeleton
- Interacts with CD43, ICAM3, NCF 1, NCF4, VCAM-1, EZR
- Downregulated at least 2 fold in TNBC with Metformin

Moesin and Breast Cancer Cell Motility

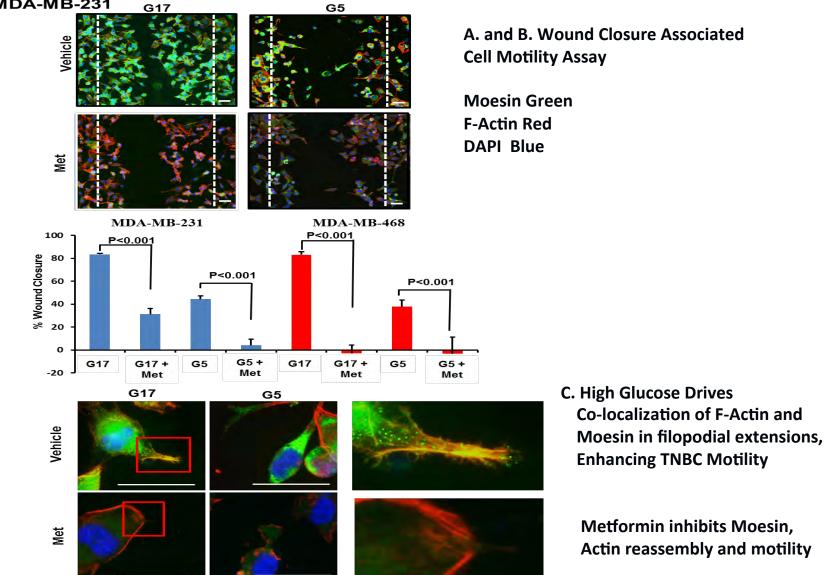

Wahdan-Alaswad R....Thor AD. Cell Cycle 12:3759-69, 2013.

Figure 4

В.

C.

A. MDA-MB-231

Summary: Metformin

- Metformin has shown potent anti- cancer activity in clinical, preclinical and epidemiologic studies.
- Its effects extend beyond patients with metabolic disease, obesity or diabetes. The potent anti-cancer action likely reflects critical defects in cellular biology of cancer cells, for example, the Warberg effect.
- Metformin can have very different and widespread anti-growth and death inducing effects on molecular subtypes, and subtypes of subtypes of cancer. In general, it appears most potent against cancers that are highly aggressive and more stem like (EMT).
- Metformin's anti-stem activity may be particularly important for reducing dormancy, that promotes recurrence and treatment resistance.
- Its activity can be modified by the environmental milieu, in including extracellular glucose and ligands that bind to specific membrane receptors or transporters.
- Metformin is a well tolerated, inexpensive oral agent administered worldwide with decades of clinical use.
- ~100 clinical trials underway to test its efficacy against cancer.

Acknowledgements

Thor Lab

S Edgerton MA R Wahdan-Alaswad, PhD I Alimova, MD X-S Deng, MD

Bolin Liu, MD* Xiaohe Yang, MD* Carol Sartorius, PhD Steve Anderson, PhD E Wellberg, Ph.D.

McLean Lab

A Checkley, Ph.D. E Giles, Ph.D. Paul McLean, PhD C Perou C Harrell, Ph.D.

FUNDING

Colorado Cancer League Department of Defense Breast Cancer Res Komen Foundation American Cancer Society

Additional References on Metformin from Thor et al

- Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, Thor AD. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest *in vitro*, *Cell Cycle*, 8:1-7, 2009
- B Liu, Z Fan, S Edgerton, X H Yang, S Lind, and A Thor Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. *Cell Cycle* 10: 1-8, 2011.
- Deng X-S, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, Wahdan-Alaswad R, Thor AD. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple negative breast cancers. *Cell Cycle*, Vol 11:367-76, 2012.
- Giles ED, Wellberg EA, Astling DP, Anderson SM, Thor AD, Jindal S, Tan A-C, Schedin PS, MacLean PS. Obesity and overfeeding affecting both tumor and systemic metabolism activates the progesterone receptor to contribute to postmenopausal breast cancer. *Cancer Research* 72:6490-501, 2012
- Wahdan-Alaswad R, Fan Z, Edgerton SM, Liu B, Deng X-S, Arnadottir SS, Richer JK, Anderson SM, Thor AD. Glucose promotes breast cancer aggression and reduces metformin efficacy. *Cell Cycle* 12:3759-69, 2013
- Zhu P, Davis M, Blackwelder A, Bachman N, Liu B, Edgerton S, Williams L, Thor A, Yang X. Metformin selectively targets tumor initiating cells in erbB-2 overexpressing breast cancer models. *Cancer Prev Res*. 7:199-210, 2014.
- Wahdan-Alaswad R, Harrell C, Fan Z, Edgerton SM, Liu B, Thor AD. Metformin attenuates transforming growth factor beta (TGF-b) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. *Cell Cycle* 15:1046-59, 2016
- Checkley LA, Rudolph MC, Wellberg EA, Giles ED, Wahdan-Alaswad RS, Houck JA, Edgerton SM, Thor AD, Schedin P, Anderson SM, MacLean PS. Metformin accumulation correlates with organic cation transporter 2 protein expression and predicts mammary tumor regression *in vivo. Can Prev Res* 10(3): 198-2017, 2017
- Wahdan-Alaswad RS, Edgerton SM, Salem HS, Thor AD. Metformin targets cholesterol biosynthesis pathway, GM1 lipid raft stabilization, EGFR signaling and proliferation in triple negative breast cancers. Can Therapy Oncol Int J 9:555765 2018
- Giles ED, Jindal S, Wellberg EA, Schedin T, Anderson SM, Thor AD, Edwards DP, MacLean PS, Schedin P. Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. *Br Can Res* 20:50, 2018