

University of Colorado Anschutz Medical Campus

CAR T Cell Therapy for Cancer: What have we learned so far?

Terry J. Fry, M.D.

Outline

- •Brief History of Immunotherapy
- •Development of CAR Concept
- •Clinical CART experience
- •Future of CART therapy

Coley's Toxin: The beginnings of Immunotherapy

Figure 1. William B. Coley (1862-1936) from *Trans Am Surg Assoc* 54(1936):415. Courtesy of the Welch Library of the History of Medicine.

1891

CONTRIBUTION TO THE KNOWLEDGE OF SARCOMA.

By WILLIAM B. COLEY, M.D.,

OF NEW YORK.

- A CASE OF PERIOSVEAL ROUND-CELLED SARCONA OF THE METACARPAL BONE; AMPUTATION OF THE FOREARM; GES-ERAL DISSEMINATION IN FOUR WEEKS; DEATH SIX WEEKS LATER.
- The General Course and Prognosis of Sarcoma, Based Upon an Analysis of Ninety Unpublished Cases.
- III. THE TREATMENT OF SARCOMA BY INCLUATION WITH ERVEIPELAS, WITH A REPORT OF THREE RECENT (ORIGI-NAL) CASES.

THE patient a young lady, set. v8, had been in perfect health from earliest childboad. The family history was likewise good with the exception of a remice tubercular tendency, and the fact that an ancester, three generations before, had died of "cancer" of the lip, presumably epithelionsa.

In the early part of July, sligo, she received a slight blow upon the back of the right hand. The hand bocame a little swollen and somewhat painful the first night. The next lew days the pain became a triffe less and the swelling subsidied, but did not entirely disappear. About a week later the swelling again began to increase very slowly, and the pain became more severe. She comulted a physician at the time of the injury, but there being no evidence of anything more than an ordinary bruise the usual local applications were applied.

August 1.8. The pain and swelling continuing, she again sought

'Read before the Surgical Section of the New York: Academy of Medicine, April 27, 1834. (With a report of these cases treated sitter). William Coley, MD

- New York Cancer Hospital (later to become part of MSKCC)
- Bone Sarcoma Surgeon
- Took care of Elizabeth Dashiell, friend of JD Rockefeller, Jr, who died as a teen of aggressive bone cancer
- 19th century treatments based on theory that postsurgical infections improved chance for survival from cancer.
 - "Coley's Toxins"

Learning from Exceptional Responders "Nature often gives us hints to her profoundest secrets..." (W. Coley, 1882-1936)

seven years after. (Bull's case.)

T cell Activation

Adapted from Fry et al, in Principles and Practice of Pediatric Oncology, Seventh Edition, 2015.

Basic Science and Translation: Report of Tumor Rejection following anti-CTLA4 Treatment

Enhancement of Antitumor Immunity by CTLA-4 Blockade

Dana R. Leach, Matthew F. Krummel, James P. Allison*

One reason for the poor immunogenicity of many tumors may be that they cannot provide signals for CD28-mediated costimulation necessary to fully activate T cells. It has recently become apparent that CTLA-4, a second counterreceptor for the B7 family of costimulatory molecules, is a negative regulator of T cell activation. Here, in vivo administration of antibodies to CTLA-4 resulted in the rejection of tumors, including preestablished tumors. Furthermore, this rejection resulted in immunity to a secondary exposure to tumor cells. These results suggest that blockade of the inhibitory effects of CTLA-4 can allow for, and potentiate, effective immune responses against tumor cells.

SCIENCE • VOL. 271 • 22 MARCH 1996

Clinical Response in Melanoma: NCI Surgery Branch anti-CTLA4 Trial

Complete resolution of 2 subcutaneous nodules, 31 lung metastases and 0.5 cm brain metastasis.

July, 2003

Ribas and Wolchock, Science 2018

Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer

Matthew D. Hellmann,^{1,2,3,4,17,*} Tavi Nathanson,⁵ Hira Rizvi,³ Benjamin C. Creelan,⁶ Francisco Sanchez-Vega,^{7,8} Arun Ahuja,⁵ Ai Ni,⁹ Jacki B. Novik,⁵ Levi M.B. Mangarin,¹⁰ Mohsen Abu-Akeel,¹⁰ Cailian Liu,¹⁰ Jennifer L. Sauter,¹¹ Natasha Rekhtman,¹¹ Eliza Chang,⁵ Margaret K. Callahan,^{1,2,4} Jamie E. Chaft,^{1,2,3} Martin H. Voss,^{1,2} Megan Tenet,³ Xue-Mei Li,¹² Kelly Covello,¹² Andrea Renninger,¹² Patrik Vitazka,¹² William J. Geese,¹² Hossein Borghaei,¹³ Charles M. Rudin,^{1,2,3} Scott J. Antonia,⁶ Charles Swanton,^{14,15} Jeff Hammerbacher,^{5,16} Taha Merghoub,^{1,2,4,10} Nicholas McGranahan,¹⁴ Alexandra Snyder,¹ and Jedd D. Wolchok^{1,2,4,10}

The prevalence of somatic mutations is low in many cancers

nature

•Brief History of Immunotherapy

• Development of CAR Concept

Clinical CART experienceFuture of CART therapy

Redirecting Specificity for Adoptive Cell Therapies: Synthetic Immunology

Advantages of CAR

- Specific for a surface antigen
- Free of MHC
 restriction
- Signals for full activation are self-contained

Adapted from Lee et al, Clin Can Res, 2012

Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity

(chimeric genes/antibody variable region)

GIDEON GROSS, TOVA WAKS, AND ZELIG ESHHAR*

Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel

Communicated by Michael Sela, July 13, 1989 (received for review June 18, 1989)

Yoshihisa Kuwana¹, Naoko Utsunomiya², Yoshihiro Asakura, Mamoru Nakanishi², Yohji Arata², Seiga Itoh³, Fumihiko Nagase⁴ and Yoshikazu Kurosawa^{1*}

EXPRESSION OF CHIMERIC RECEPTOR COMPOSED OF IMMUNOGLOBULIN-DERIVED

V RESIONS AND T-CELL RECEPTOR-DERIVED C REGIONS

- ¹Institute for Comprehensive Medical Science, Fujita-Gakuen Health University, Toyoake, Aichi, 470-11 ²Faculty of Pharmaceutical Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113 ³Tokyo Research Laboratories, Kyowa Hakko Co., Asahimachi, Machida, Tokyo, 194
 - ⁴Department of Immunology, Nagoya University School of Medicine, Tsurumai, Showa-ku, Nagoya, 466, Japan

Received November 12, 1987

Vol. 149, No. 3, 1987

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Pages 960-968

December 31, 1987

CD19 CAR: First report

Brief report

Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19

James N. Kochenderfer,¹ Wyndham H. Wilson,² John E. Janik,² Mark E. Dudley,¹ Maryalice Stetler-Stevenson,³ Steven A. Feldman,¹ Irina Maric,⁴ Mark Raffeld,³ Debbie-Ann N. Nathan,¹ Brock J. Lanier,¹ Richard A. Morgan,¹ and Steven A. Rosenberg¹

¹Surgery Branch, ²Metabolism Branch, and ³Laboratory of Pathology, National Cancer Institute, Bethesda, MD; and ⁴Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD

BLOOD, 18 NOVEMBER 2010 · VOLUME 116, NUMBER 20

Outline

Brief History of Immunotherapy Development of CAR Concept Clinical CART experience Future of CART therapy

Initial Experiences with CD19 CAR T cells

70-90% of patients achieve remission

Lee, D et al. Lancet, 2014

CD19 CARs: original CARs: multiple variants, comparable efficacy in early phase trials

Sadelain, JCI, 2015

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia

S.L. Maude, T.W. Laetsch, J. Buechner, S. Rives, M. Boyer, H. Bittencourt,
P. Bader, M.R. Verneris, H.E. Stefanski, G.D. Myers, M. Qayed, B. De Moerloose,
H. Hiramatsu, K. Schlis, K.L. Davis, P.L. Martin, E.R. Nemecek, G.A. Yanik,
C. Peters, A. Baruchel, N. Boissel, F. Mechinaud, A. Balduzzi, J. Krueger,
C.H. June, B.L. Levine, P. Wood, T. Taran, M. Leung, K.T. Mueller, Y. Zhang,
K. Sen, D. Lebwohl, M.A. Pulsipher, and S.A. Grupp

Maude SL et al. N Engl J Med 2018;378:439-448

CD22 targeted CART achieves MRD Negative Remission in Relapsed/Refractory ALL

41BE

CD3C

Haso....Fry, ASH 2013 Fry/Shah et al., Nature Medicine 2017

CD22 BBz CAR: Relapse associated with CD22 modulation

Shalabi.....Fry, Shah, Hematologica, 2017

Days post CD22 CAR T-Cells

Manufacturing Details Matter

	CD3/CD28 enriched	CD4/CD8 selected
Fold expansion	0	40
Transduction efficiency	0.6	15

Importance of Correlative Science

Outline

Brief History of Immunotherapy Development of CAR Concept Clinical CART experience

•Future of CART therapy

Patterns of Failure after CAR T cell Therapy

Multispecific CAR Targeting

Development of an Active CD19/CD22 Bivalent CAR

Haiying Qin Nature Medicine, 2017 Molecular Therapy Oncolytics, 2018

Clinical Activity of TanCAR: Bivalent CD19/22-CAR

Translation

Signal Integration

Leukemic evolution in the context of targeted Immunotherapy can be complex

Gardner et al, Blood, 2016

Patterns of Failure after CAR T cell Therapy

Chimeric Receptors are Not the Same as the native TCR

Signaling through the mCD19-28z CAR leads to prolonged Zap70 phosphorylation and decreased phosphorylation of Erk relative to TCR

CAR-mediated anti-leukemic potency inferior to TCR

CAR-OTI Dose: 50,000/mouse

So, what have we learned?

- Single antigens comparable to CD19 will be difficult to find
- Details of CAR T cell products matter
- Antigen modulation as well as more complex patterns of cancer resistance will frequently emerge
- Current CAR formats do not fully recapitulate T cell biology
- As synthetic receptors, the ability to modify is almost endless
- Binding domains, signaling domains, multiplexing
 COST of and ACCESS to complex therapeutics will
 be a challenge

Acknowledgments

Pediatric Oncology Branch

- Nirali Shah
- Cindy Delbrook
- Bonnie Yates
- Sharon Mavroukakis
- Haneen Salabi
- POB Fellows

CHILDREN'S ONCOLOGY GROUP Foundation

JUGIETT

pediatric blood & marrow transplant consortium

Hematologic Malignancy Section

- Haiying Qin
- Lila Yang
- Amy Yang
- Chris Chien
- Sneha Ramakrishna
- Eric Kohler
- Zach Walsh

Denver Lab

- Eric Kohler
- Savannah Ross
- Jen Cimons
- Zach Walsh
- Lillie Leach
- Christine Meadows
- Michael Yarnell

Patients and Families

