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pervasive desire to predict science

— sy

& what will be discovered? @

¥ by whom, when, and where?



pervasive o redict science

¥ what will be discovered? @
¥ by whom, when, and where?
& % individuals what questions are useful, impactful, fundable?
g ﬁ publishers, what manuscripts or projects will be most
= funders impactful®?
gty wian gian  NINNQ which applicant will perform best?
@@@ committees which will make most valuable contributions?

,L\/L\,Q.
|
K,

soclety now can tax and other dollars be invested to make
technological, biomedical, and scientific advances?




how predictable are scientific discoveries?

— sy

¥ simple question with a 150+ year history



how predictable are scientific discoveries’

Bolestaw Prus Florian Znaniecki Freeman Dyson Steven Weinberg Harriet Zuckerman
(1847-1912) (1882-1958) (1923-2020) (1933-) (1937-)

¥ philosophy, physics, sociology...

mainly conceptual, focusing on goals and general approaches
(Weinberg: "to explain the world") (Dyson: "birds and frogs")

¥ progress toward a genuine "science of science" was slow
nard to get good data
judgement of experts seemed good enough

* this question complements the old and rich literature on the sociology of science: who gets to make discoveries”?



predictabilit nds on context

Unexpected Expected
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Clauset, Larremore & Sinatra, Science 355, 477-480 (2017)



https://science.sciencemag.org/content/355/6324/477

predictaol

unexpected discovery
changes the way we understand the world, or finds novel use elsewhere
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Clauset, Larremore & Sinatra, Science 355, 477-480 (2017)
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accumulation of theory and evidence, fits with other ideas
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Clauset, Larremore & Sinatra, Science 355, 477-480 (2017)
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«depends on context
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"normal” discovery
some elements surprising, but fits partly within existing ideas
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a modern science of science

e ———— ===

predicting discovery



APS Data Sets for Research

predicting discovery

¥ abundant data

® (1) publications + citation networks,
(2) people, (3) funding

® Google Scholar, PubMed, Web of Science, arXiy,

‘ computer science bibliography

JSTOR, OCRID, EasyChair, NIH, NSF, patents,
CVs, etc. GO gle
¥ abundant computation Connecting Research

® growing interdisciplinary community
M computer scientists, information scientists, economists,
sociologists, statisticians, physicists, biologists, etc.

surely all this data must enable better predictions
of future discoveries!




predicting discovery APS Data Sets for Research

¥ surely all this data must enable better P/ VWEB OF SCIENCE
predictions of future discoveries?




predicting discovery APS Data Sets for Research

¥ surely all this data must enable better /~/ VWEB OF SCIENCE
predictions of future discoveries?

¥ yes, but. .. oy




a modern science of science

predicting discovery APS Data Sets for Research

¥ surely all this data must enable better /~/ WEB OF SCIEN
predictions of future discoveries?
}yes, but. .. \'\

¥ the data are crude + biased + noisy + iIncomplete :
they don’t directly measure knowledge or progress

® what things are predictable and what things are not”




the canonical narrative (50+ years of evidence):

¥ rapid rise to an early peak
¥ decline or flattening



the canonical narrative (50+ years of evidence):
® rapid rise to an early peak
® decline or flattening

publication rates in psychology, 1986

Horner, et al. Psychology and Aging 1(4), 319 (1986)

/
/

6

4

;2£

1

WEIGHTED MEAN
PUBLICATION RATE PER YEAR

- L s ————— -
25-34 35-44 45-54  55-64 65-74

AGES

Figure 1. Weighted mean publication rate per year for 1,084 North
American academic psychologists at five age intervals.



https://psycnet.apa.org/record/1987-11617-001

the canonical narrative (50+ years of evidence):
# rapid rise to an early peak
® decline or flattening

publication rates in psychology, 1986

. INn Russian science & math, 1954

20 25 30 35 O 45 Pl 29 60 65 70 75

- Frc. 1. Age wversus creative production rate for
Russians only, in science and mathematics.

| ehman, The Scientific Monthly 78, 321-326 (1954)



https://www.jstor.org/stable/21486
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Frc. 2. Solid line: age versus creative production
rate for Englishmen only, in science and mathematics.
Broken line, same as Fig. 1.

Lehman, The Scientific Monthly 78, 321-326 (1954)
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Frc. 2. Solid line: age versus creative production

rate for Englishmen only, in science and mathematics.
Broken line, same as Fig. 1.
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Fic. 5. Solid line: age versus creative production rate

for Germans only, in science and mathematics. Broken
line, same as Fig. 1.

Lehman, The Scientific Monthly 78, 321-326 (1954)
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Fie. 3. Solid line: age versus creative production
ratc for Frenchmen only, in science and mathematics.
Broken line, same as Iig. 1.
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Fic. 6. Solid line: age versus creative production
rate for individuals from the U.S.A. only, 1 science
and mathcematics. Broken line, same as Fig. 1.
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Fic. 4. Solid line: age versus creative production

rate for Italians only, in science and mathematics. Broken
line, same as Fig. 1.

200 25 30 35 40 45 5 5 6 65 70

Fic. 7. Solid line: age versus creative production
rate 1n science and mathematics for the nationals of 14
different countries other than Russia, England, France,

Italy, Germany, and the U.S.A. Broken line, same as
Fig.
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the canonical narrative (50+ years of evidence):
® rapid rise to an early peak
® decline or flattening

publication rates in psychology, 1986
. In Bysstar science & math, 1954
. hunter-gather groups

. French & Philly criminals, 1835

. French artists, 1835
... many others, 1950s - present

Kaplan et al., Evol. Anth.: Issues, News, and Rev., 9, 156-185 (2000)
Quetelet, 1835
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https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6505(2000)9:4%3C156::AID-EVAN5%3E3.0.CO;2-7
https://www.google.com/books/edition/Facts_Laws_and_Phenomena_of_Natural_Phil/Rkw0AQAAMAAJ

the canonical narrative (50+ years of evidence):
# rapid rise to an early peak
® decline or flattening
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https://www.pnas.org/content/114/44/E9216.abstract

¥ rapid rise to an early peak
® decline or flattening
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Way, Morgan, Clauset, & Larremore, PNAS 114 (44) E9216 (2017) n = 2453 early career computer sclence faCuIty
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productivity over
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average productivity appears to be predictable Q
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Way, Morgan, Clauset, & Larremore, PNAS 114 (44) E9216 (2017) n = 2453 early career computer sclence faculty
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productlwty over a career

Pub. count

Pub. count

Stable, non-linear (32.3%)

Q2

Way, Morgan, Clauset, & Larremore, PNAS 114 (44) E9216 (2017)

- Unstable and/or linear (67.7%)

® o
[ 7 N\J
u® .’ l.’
‘ 3 o .'..
? A T =
" " ‘ [ ] [} .l.
u " - [ X)) e,

: - ‘ : T P e :
X ¥ - f S Q
» . . o = " - n ..'. O
I —‘ L] L] : n .‘ [ ] o e
N ‘ . ‘ ., " » 2 * ", -

. o N ) ® " . @]
. < ©® . S
e :: R ’ = %
.- , v . o 'Y () al
. : "[‘. . ‘ . [ ] Q’
n - n .
-: . 9@ 5 |e
: l. [ ) [ J 1--
o “ ° S °
P ® ~. (" 4 :Q
ears post-hire @89
., .... 0 o ®
® . °
4 -3 2l e g L5 3 -4
.' (Q " P o a® (]
0%0,0%) I .3». 09 wo e °
-—e—o-a—-—.-.-— @ T e S W e O e T
°® e Q¢ o~ o S 1 J ) e
PY 0. . [ ) [ ) ) aQ ) 0 -~ ( ) <
°® ° o‘.i\ < .";“J' S ) ‘e ° Y
“‘ ® .g(‘» o/" '0:9:9=) ,‘;‘3':( ).' N .‘ 6‘
““ '.P( :i.s..)‘ = .'~, o) ,.‘(
. ® -0, d 9
“““ ....' ’\ S \/..'.. o ‘0 [ ) d
. -1 QR Dot Sidely
- I ;0:‘: o d ) © O o' Qe
¥ ot Yo e X~ U o s, ‘@ o
: ““ @ [ J & '.. )
L 3
. ““ » . « ° "O,. C
‘/ » “; PY [ X ) ) ® (] O.. 3
) N _2 ..\ a .. Te. O
“ [ ] ° O
: .‘ [ ] PY ..
‘ -‘. ) [ A -
( ] Q
L
L] . .
() )
" of e ° o
\ 3¢
L Ng - .
-\
. ‘ L] [ ]
- " . - o .“ ‘ P . -
" "a . T— - o S °
O—O0—0-0-0—0'0—0'0'0'0'0'0'0™ 0 °
Years post-hire @3 o Q4
[

P
p
D)
n
o 4
1]
x® ]
" L
x 2 Ll
L] y bl
n * a
.
@ v .
[ 2 y @
N - ‘ 4
. ’ [ L .
L2
S ']
® .. o .
" » * o 0/
‘l‘.. ‘\. . ‘
L]
~
-0
.
Years post-lnre
o .
i, PR )
PR L
s -
SO
n \d "
= » .
[ ) b
. .
. 8 y L
() . ()
(] .
g (X )
-
: . . \ )
g o NS4
;N o0
' » "‘ .= - .
"‘ ‘ .
| .
.

L]

- L4
.

0

Unstable,
non-linear

(1.0%)

Stable,
linear
(44.9%)

Unstable,
linear

(21.8%)

Q1 (1.4%)

02 (1.7%)
\QS 0.5%)
AN

Years post-hire

Conventional narrative; N=222 (20.3%)

(4, outside

conv. narrative
(8.2%)



https://www.pnas.org/content/114/44/E9216.abstract

timing of big discoveries
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conventional narrative: scientific creativity peaks early



conventional narrative: scientific creativity peaks early V4

APS Data Sets for Research
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. %) Nobel in Physics (1982): phase transitions and renormalization group

450,000 articles from Physical Review, 1893-2016
Sinatra et al., Science 354, 596 (2016)



https://science.sciencemag.org/content/354/6312/aaf5239.full

conventional narrative: setentific-creativty-peaks—catly — except it doesn’t \'\
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some aspects of science are highly predictable @

#» most citation counts, institution of origin, maximum impact, etc.

b aggregate trends like CPU speed, solar cell efficiency, battery cost, etc. ,./

¥ interdisciplinary research is harder to publish & fund

¥ under-represented groups (women, non-whites) receive less funding, attention, etc.



some aspects of science are highly predictable @

#» most citation counts, institution of origin, maximum impact, etc.

b aggregate trends like CPU speed, solar cell efficiency, battery cost, etc. ,./

¥ interdisciplinary research is harder to publish & fund

¥ under-represented groups (women, non-whites) receive less funding, attention, etc.

Ny

other aspects appear fundamentally unpredictable 4

¥ productivity over a career, timing of biggest discovery, etc.

¥ long-term impact of proposed project or manuscript

¥ what discoveries are not being made because of our focus on predictability?

¥ predicting discovery is just. plain. hard. (even for humans) <



some aspects of science are highly predictable

other aspects appear fundamentally unpredictable

¥» the data are crude + biased + noisy + incomplete "
they don’t directly measure knowledge or progress

& poor understanding of mechanisms that drive scientific discovery %’@
soclal and scientific, individual and structural
why are some things predictable, and others not”

% predicting new discoveries is a form of extrapolation = hard RN
even expert humans struggle! should we expect dumlb machines to do better?




looking forward

¥ this diversity is a key part of its continued success

B machine learning could expand or contract it "

#» can we adapt diversity ideas from ecology and evolutionary theory? “\)
design principles of robustness, diversifying selection, stabilizing feedback, etc.

b if discovery Is inherently unpredictable, better to cultivate a diverse
scientific ecosystem than try to automate its prediction

R 'novel discoveries are valuable precisely because they have never been seen
before, while data-driven prediction techniques can only learn about what's
been done 1n the past”




a role for machine intel
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a role for machine intelligence

Gravitational
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science : extrapolation

b . x-rayls | | |Fermat’s last theorem @
¥ current Al requires huge amount % erowame cooking cussicrystl %@
%

of human pampering (training _— | gj%ﬁ@
. . ibozymes alculus

data, J[Uﬂlﬂg, malﬂteﬂaﬂCe, Theory of evolution Church-Turing Thesis (general purpose computers) <\5\9

improvement)

& current Al is "dumb" = no model of mind, no physical intuition, no understanding, no thinking

¥ machines don’t know what questions to ask = most useful for "expected" discoveries
but that’s okay.

science among the machines will be a grand story of collaboration



¥ solution = collaboration <~

¥ hybrid approaches will extend human control of natural and

¥ a secret: this is history! =

® science is probably not automatable

machines: interpolation
science : extrapolation

{

humans : design, bulld, decide, interpret, extrapolate
machines : collect, scale, calculate, estimate, interpolate

artificial processes in seemingly magical ways and
it will change humans in the process

..M.

~ not the future.

every revolutionary technology has been a super power that
changes humans:

language -, writing ,{__ mathematics O, democracy m science @i , computers



looking forward (again)

¥ this diversity is a key part of its continued success

B machine learning could expand or contract it "

#» can we adapt diversity ideas from ecology and evolutionary theory? “\~)
design principles of robustness, diversifying selection, stabilizing feedback, etc.

¥ if discovery is inherently unpredictable, better to cultivate a diverse Q
scientific ecosystem than try to automate its prediction

ﬁ 'novel discoveries are valuable precisely because they have never been seen
before, while data-driven prediction techniques can only learn about what's
been done 1n the past”
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