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pervasive desire to predict science

individuals what questions are useful, impactful, fundable?

publishers, 
funders

what manuscripts or projects will be most 
impactful?

hiring 
committees

which applicant will perform best?                       
which will make most valuable contributions?

society how can tax and other dollars be invested to make 
technological, biomedical, and scientific advances?
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simple question with a 150+ year history

how predictable are scientific discoveries?

Bolesław Prus 
(1847-1912)

Florian Znaniecki 
(1882-1958)

Freeman Dyson 
(1923-2020)

Steven Weinberg 
(1933-)

• philosophy, physics, sociology… 
• mainly conceptual, focusing on goals and general approaches 

(Weinberg: "to explain the world") (Dyson: "birds and frogs") 
• progress toward a genuine "science of science" was slow 

hard to get good data 
judgement of experts seemed good enough

* this question complements the old and rich literature on the sociology of science: who gets to make discoveries?

Harriet Zuckerman 
(1937-)
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Data-driven predictions in
the science of science
Aaron Clauset,1,2* Daniel B. Larremore,2 Roberta Sinatra3,4

The desire to predict discoveries—to have some idea, in advance, of what will be
discovered, by whom, when, and where—pervades nearly all aspects of modern science,
from individual scientists to publishers, from funding agencies to hiring committees. In this
Essay, we survey the emerging and interdisciplinary field of the “science of science”
and what it teaches us about the predictability of scientific discovery. We then discuss
future opportunities for improving predictions derived from the science of science and its
potential impact, positive and negative, on the scientific community.

T
oday, the desire to predict discoveries—to
have some idea, in advance, of what will be
discovered, by whom, when, and where—
pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
The more predictable we can make the process
of scientific discovery, the more efficiently those
resources can be used to support worthwhile
technological, biomedical, and scientific advances.
Despite this pervasive need, our understand-

ing of how discoveries emerge is limited, and
relatively few predictions by individuals, publish-
ers, funders, or hiring committees are made in a
scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
scientists make progress on individual scientific
challenges, see (1).]

Interest in predicting discoveries stretches
back nearly 150 years, to work by the philosopher
Boleslaw Prus (1847–1912) and the empirical soci-
ologist Florian Znaniecki (1882–1958). Znaniecki,
in particular, called for the establishment of a data-
driven study of the social processes of science. For
most of the 20th century, progress toward this
goal came slowly, in part because good data were
difficult to obtain and most people were satisfied
with the judgment of experts.
Today, the scientific community is a vast and

varied ecosystem, with hundreds of loosely inter-
acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
This daunting size and complexity has broadened
the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
questions (2, 3). It is now widely believed that
exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
These efforts raise a provocative question:Will

we eventually be able to predict important dis-
coveries or their discoverers, such as Yoshinori
Ohsumi’s Nobel Prize–winning work on the au-
tophagy systeminanimal cells?Wedonot yet know
the answer, but work toward one will substantially
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Fig. 1. How unexpected is a discovery? Scientific discoveries vary in how unexpected they were relative to existing knowledge. To illustrate this perspective,
17 examples of major scientific discoveries are arranged from the unanticipated (like antibiotics, programmable gene editing, and cosmic microwave background
radiation) to expected discoveries (like the observation of gravitational waves, the structure of DNA, or the decoding of the human genome).
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pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make
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their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
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resources can be used to support worthwhile
technological, biomedical, and scientific advances.
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scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
scientists make progress on individual scientific
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in particular, called for the establishment of a data-
driven study of the social processes of science. For
most of the 20th century, progress toward this
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acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
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the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
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exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
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Fig. 1. How unexpected is a discovery? Scientific discoveries vary in how unexpected they were relative to existing knowledge. To illustrate this perspective,
17 examples of major scientific discoveries are arranged from the unanticipated (like antibiotics, programmable gene editing, and cosmic microwave background
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pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over
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important to the public, who fund the majority
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predicting discovery 
• abundant data 

(1) publications + citation networks,                     
(2) people, (3) funding 
Google Scholar, PubMed, Web of Science, arXiv, 
JSTOR, OCRID, EasyChair, NIH, NSF, patents, 
CVs, etc. 

• abundant computation 
• growing interdisciplinary community 

computer scientists, information scientists, economists, 
sociologists, statisticians, physicists, biologists, etc. 

surely all this data must enable better predictions     
of future discoveries!

a modern science of science
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• yes, but…

a modern science of science



predicting discovery 
surely all this data must enable better      
predictions of future discoveries? 

• yes, but… 

• the data are crude + biased + noisy + incomplete :                           
they don’t directly measure knowledge or progress 

• what things are predictable and what things are not?

a modern science of science
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. . . in Russian science & math, 1954
. . . hunter-gather groups
. . . French & Philly criminals, 1835
. . . French artists, 1835
. . . many others, 1950s - present
. . . computer scientists

faculty hiring project

Way, Morgan, Clauset, & Larremore, PNAS 114 (44) E9216 (2017)

in the first decade of a career of roughly 2.7 publications for
every 10-rank improvement in prestige. In fact, when comparing
public and private institutions, neither the prestige–productivity
slope nor productivity overall is significantly different (P =0.150,
0.148, respectively, two-tailed t test), contradicting the con-
ventional wisdom that private universities enjoy a productivity
advantage over public ones. The conventional wisdom is likely
skewed by a focus on elite departments, as 8 of the top 10
computer science departments are private (26), but in fact, pri-
vate institutions are distributed evenly across all ranks. Expand-
ing this analysis to include lifetime publications increases the
prestige–publication slope to 3.28 publications per 10-rank
improvement in prestige but does not alter the nonsignificance
of public/private status (P =0.714, 0.346, two-tailed t test).

Past studies have also found that publication rates have
increased over time (29, 30). However, before investigating
whether changes in publication rates apply to computer science,
we used the manually collected CV data to probe the extent of
DBLP’s coverage. Indeed, the fraction of publications indexed by
DBLP is nonuniform over time, increasing linearly from around
55% in the 1980s to over 85% by 2011 (R2 = 0.685, P < 0.001,
two-tailed t test; Fig. S1 and General Trends in Productivity Data).
Because DBLP’s coverage of the published literature varies over
time, in the analyses that follow we use data from hand-collected
faculty CVs whenever possible and otherwise apply a statistical
correction to DBLP’s data to account for its lower coverage.

Knowing already that there are substantial differences in pro-
ductivity by prestige, we separated universities by prestige into
five groups of approximately equal size and investigated whether
the growth of publication rate varies by prestige. We find that
the average number of publications per person produced in each
calendar year has been increasing at all five strata of prestige at
rates between 0.72 and 1.23 publications per decade, for 45 years
(Fig. S3). Because we have used data from hand-collected faculty
CVs to adjust DBLP-derived paper counts for DBLP’s steadily
improving coverage over time, these estimated growth rates
represent a real increase in publication rates over this 40-year
period. Moreover, the observed steady increase in productivity
is not uniform across prestige, and the difference between pro-
duction growth rates between higher- and lower-prestige depart-
ments has widened slightly but significantly over time (P < 0.05,
two-tailed t test). In other words, prestigious and nonprestigious
institutions have contributed to the overall growth at different
rates. Not only are there small but significant differences in pro-
ductivity by prestige (Fig. 1) but also those differences are slowly
growing (Fig. S3).

To investigate the productivity patterns of individual research-
ers and test the conventional narrative of rapidly rising produc-
tivity followed by a gradual decline, for the remainder of this
paper we focus on time series of individual productivity. How-
ever, due to both the observed growth in productivity and the
variability in DBLP coverage, it would be misleading to directly
compare a 1975 publication with a 2011 publication. Thus, here-
after we use “adjusted” publication counts, which corrects the
raw DBLP counts to account for both the changing DBLP cov-
erage and the increasing mean publication rate over time (Gen-
eral Trends in Productivity Data). All publication counts are hence
reported as 2011-equivalent counts.

Individual Productivity Trajectories. Examining the productivity
trajectories of individual researchers, we find that they too
exhibit substantial and significant differences in their publica-
tion rates. Early studies of scholarly productivity noted pro-
found imbalance in the number of articles published by indi-
vidual researchers (31, 32). Cole (33) and Reskin (34) in the
1970s noted that about 50% of all scholarly articles were pro-
duced by about 15% of the scientific workforce. Our data reflect
similar levels of imbalance, with approximately half of all con-

tributions in the dataset authored by only 20% of all faculty.
Stratifying by decade, however, the Gini coefficients for produc-
tivity imbalance have been declining, from 0.62 in the 1970s to
0.40 in the 2000s (Fig. S5). This trend persists when researchers
are restricted to only the publications within the first 5 years of
their careers.

There are several possible explanations for the trend of
decreasing inequality in individual productivity. For instance, the
lower end of the productivity distribution could have become
relatively more productive over time, perhaps as more institu-
tions shifted focus from teaching to research. Or, it may reflect
a strengthening selective filter on highly productive faculty, per-
haps as community expectations for continual productivity rose.
It may also reflect nonuniform errors in the DBLP data, although
the correction for DBLP coverage should account for these
(General Trends in Productivity Data).

We now focus on testing the conventional productivity narra-
tive that has been described in various disciplines and at many
points in time (5–11, 13, 14, 16, 17): Productivity climbs to a peak
and then gradually declines over the course of the researcher’s
career. Across computer science faculty, we find that the aver-
age number of publications per year over a faculty career is
highly stereotyped (Fig. 2), with a rising productivity that peaks
after around 5 years, declines slowly for another 5 years, and
then remains roughly constant for any remaining years. Although
departmental prestige correlates with productivity in several
ways (Fig. 1 and Fig. S3), it does not alter this stereotypical pat-
tern, which appears essentially unchanged across departments
with different levels of prestige, except for a roughly constant
shift up as prestige increases (Fig. 2).

The suggestion that productivity grows in the early years of a
career has intuitive appeal. Professors settle into their research
environments, begin training graduate students, and build their
cases for promotion and tenure. Similarly, many reasons have
been suggested for why productivity might decrease after pro-
motion, including increased service and nonresearch commit-
ments, declining cognitive abilities, and increased levels of dis-
traction from outside work due to health issues and childcare
obligations (35). Although an average over faculty appears to
confirm the stereotyped trajectory of rapid growth, peak, and
slow decline, it does not reveal whether this average is repre-
sentative of the many individual trajectories it averages over, nor
does it show how much diversity there might be around the aver-
age and whether that diversity correlates with other factors of
interest.
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Fig. 2. Average publications follow conventional narrative across prestige.
Five average productivity curves are shown, partitioning universities accord-
ing to prestige rank ⇡ such that each quintile represents ⇠20% of all fac-
ulty in the full dataset. Averages over researchers at all levels of institutional
prestige follow similar productivity trajectories, in agreement with the con-
ventional narrative, but at differing scales of output.
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To characterize the productivity pattern within an individual
career, we fit a simple stereotypical model of productivity over
time to the number of papers published per year,

f (t) =

⇢
b +m1t 0  t  t⇤

b +m1t
⇤ +m2(t � t⇤) t > t⇤ , [1]

a piecewise linear function in which t⇤ is the change point
between the two lines, m1 and m2 are the rates of change in pro-
ductivity before and after the change point, respectively, and b
is the initial productivity (Fig. 3). We apply this model to the
N =1,091 faculty who have been used for 10–25 years. By fitting
these four parameters to each individual’s publication trajectory,
we map that trajectory into a low-dimensional description of its
overall pattern [fitting done by least squares; see Least-Squares
Fit of f(t) for optimal numerical methods and Modeling Frame-
work for detailed discussion of statistical models].

However, before interpreting the distributions of parame-
ters, we subjected each trajectory to two additional tests to
ensure that its best-fit parameters were meaningful. First, to
avoid overfitting linear trajectories with a piecewise linear model,
we performed model selection, asking whether the Akaike
information criterion (AIC) with finite-size correction favored
a straight line or the more complex f (t) (Model Selection).
This process conservatively selected only 33.3% (N =363) of
researchers who are more confidently modeled by the piecewise
function.

Second, to address the possibility that a researcher’s best-fit
parameters may be sensitive to small changes in the years of
their publications, we conducted a sensitivity analysis in which
we repeatedly refit model parameters to productivity trajecto-
ries, adding a small amount of noise to shift some publications
into adjacent years (Sensitivity to Timing of Publications). This
procedure places each professor’s noise-free trajectory within
a distribution of nearby noisy trajectories, enabling two differ-
ent (but ultimately concordant) analyses. The primary sensitiv-
ity analysis focuses on individual faculty, computing whether
the parameters of each professor’s noise-free trajectory are sim-
ilar to their noisy distribution. This approach revealed that
a majority (77.2%) of trajectories are well represented by
their noise-free parameters, each consistently falling into the
same region of parameter space for over 75% of resampled
trajectories. We refer to these trajectories as “stable” in sub-
sequent analyses, meaning that their noise-free parameters
are representative and interpretable. The alternative sensitiv-
ity analysis focuses on the population of faculty, combining all
noise-free trajectories with their noise-added distributions into a
single expanded ensemble of conceivable productivity trajecto-
ries (Sensitivity to Timing of Publications). Although this ensem-
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Fig. 3. Example trajectory and piecewise model. Circles represent empirical
annual publications. Orange line shows best fit of piecewise linear model 1
with slopes m1 and m2, change-point t⇤, and intercept b annotated.

ble is unable to support analyses of individual faculty, we use
it to corroborate the findings that follow. Combining the indi-
vidual stability and AICs, we find that 32.3% (N =352) of
researchers possess productivity trajectories that are both stable
and nonlinear. All analyses and discussions of model parame-
ters hereafter refer to stable, nonlinear trajectories unless other-
wise noted.

The narrative of “early growth in productivity, followed by a
slow decline” implies four conditions on the inferred parameters:
While the conditions of growth (m1 > 0) and decline (m2 < 0)
are straightforward, we interpret “early growth” to mean that
inferred peak productivity comes within the first decade after
hiring (t⇤  10) and “slow” to mean that the slope of decline
is smaller in magnitude that the slope of growth (|m2|<m1).
After fitting individual trajectory models to the 1,091 faculty
in our sample, we find that only 20.1% follow the stereotypi-
cal trajectory. Even dropping the aforementioned restriction on
t⇤ increases the fraction meeting the stereotype to only 20.3%.
To ensure that these results were not sensitive to our definition
of stability in the presence of noise, we generated an ensem-
ble with 200 noise-added trajectories for each professor (Fig. S8
and Sensitivity to Timing of Publications), subjected each to the
AIC for nonlinearity, and found that only 19.7% of ensemble
trajectories are reliably categorized as adhering to the conven-
tional narrative. In other words, the average trajectory, which
has been held up as established fact for more than 50 years,
describes the behavior of only a minority of researchers, while
a large majority of researchers follow qualitatively different
trajectories.

Publication trajectories can be divided into four general
classes based on the signs of the two slope parameters, m1 and
m2, corresponding to the quadrants shown in Fig. 4. Individual
trajectory shapes exhibit substantial diversity, spanning all four
quadrants. Even among faculty whose publication rates grew and
then declined (Fig. 4, Bottom Right quadrant, 28.6%), the con-
ventional narrative includes only the 20.3% of individuals whose
rate of growth exceeds their rate of decline (m1 > |m2|; shaded
region, Fig. 4). Additionally, researchers were distributed simi-
larly across the four quadrants, comparing parameters extracted
from DBLP data vs. hand-collected CV data (P =0.14, �2), con-
firming that the dispersion shown in Fig. 4 represents the true
diversity of careers.

The cloud of faculty trajectory parameters shown in Fig. 4 does
not naturally separate into coherent clusters. In their absence,
what are the covariates that predict which region of the plot an
individual is likely to occupy? First, early-career growth rate of
yearly publications m1 is significantly correlated (P < 0.001, t
test) with the prestige of researchers’ institutions. This is partic-
ularly true for researchers at “elite” institutions, which we define
as being in the top 20% of universities according to prestige rank
and adjusting for number of faculty (same partitions as in Fig. 2).
Specifically, researchers’ productivity grows by a median of 2.02
additional papers per year at elite institutions compared with
1.19 for others (P < 0.001, one-tailed Mann–Whitney test). Per-
haps as a result—what goes up must come down—the slope after
the point of change, m2, correlates significantly with prestige and
is more negative for researchers at higher-ranked institutions,
compared with those at lower-ranked institutions (P < 0.05, t
test). Additionally, researchers who received their doctorates
from elite institutions exhibit faster early-career growth than
those who trained at lower-ranked institutions (P < 0.05, one-
tailed Mann–Whitney test).

Second, the early-career initial productivity b is significantly
higher for faculty who graduated from elite departments
(P < 0.005, one-tailed Mann–Whitney test). We also find that
researchers who place into elite departments or who have post-
doctoral experience tend to start out more productive; how-
ever, these differences are not statistically significant (P > 0.05,
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Fig. 4. Distribution of individuals’ productivity trajectory parameters. Diverse trends in individual productivity fall into four quadrants based on their slopes
m1 and m2 in the piecewise linear model Eq. 1. Plots show example publication trajectories to illustrate general characteristics of each quadrant. The shaded
triangular region (Bottom Center) corresponds to the conventional narrative of early increase followed by gradual decline. Color distinguishes trajectories
in two classes: those that are stable and nonlinear (orange) and those that are either unstable or linear (gray). The plot at Right describes how researchers
are distributed within these two classes. conv. narrative, conventional narrative; Pub, publication.

Mann–Whitney test). These findings regarding m1 and b com-
bine to suggest that current academic environment correlates
with—and perhaps influences—productivity, while prior aca-
demic environment does not. Finally, faculty at top-ranked
departments are statistically no more or less likely to be found
within this triangular region, a result robust to alternative cutoffs
for “top-ranked” institutions.

The relationship between trajectories and gender is more com-
plicated. First, trajectories of male and female researchers were
similarly distributed across the four quadrants (P =0.94, �2

test), and gender was uncorrelated with the likelihood of meet-
ing the four criteria of the canonical narrative (P =0.39, �2 test).
Further, within this canonical subset, the women’s initial produc-
tivity grew at a rate indistinguishable from the men’s (P =0.15,
Mann–Whitney test) and peaked in similar years (P =0.305,
Kolmogorov–Smirnov test). Women’s initial productivity, how-
ever, was 0.46 publications lower than the men’s (P =0.032,
Mann–Whitney test) in general, and this difference exists despite
the fact that men and women in this subset trained and were
hired at similarly ranked institutions (P > 0.05, Kolmogorov–
Smirnov test) and completed postdoctoral training at similar
rates (P =0.89, �2 test).

The change point within a career may indicate regime shifts in
productivity, regardless of which type of trajectory an individual
may follow. While the change-point parameter t⇤ does not corre-
late with the other parameters of f (t), its distribution reveals that
for most faculty, the inferred change point in productivity rates
occurs at approximately year 5. Fig. 5 translates each selected
faculty member’s career length and inferred change point into
an ordered pair, creating a heat map of career change points.
Shown in the accompanying marginal distribution, the modal
value for t⇤ is year 5 with the median at 6 years, closely preceding
tenure decisions at most institutions. Nevertheless, there is still
rich diversity in career transitions, and the average remains mis-
leading as the descriptor of a majority of individuals. In particu-
lar, faculty at the top 20% of institutions have significantly ear-
lier t⇤ than the remaining 80%, with medians of 4.1 years and 6.4
years, respectively (P < 0.001, Mann–Whitney test). There is no
such difference between the faculty whose doctorates are from

the top 20% of institutions and those whose doctorates are from
the remaining 80% (medians of 5.9 years vs. 6.0 years; P =0.37).

The trends and diversity observed in t⇤ distributions remain
true even when models are avoided entirely. A direct empir-
ical examination of all DBLP and CV publication time series
reveals that a computer science professor’s productivity is also
most likely to peak in the fifth year, yet peak productivity can nev-
ertheless occur in any year of a professor’s career (Fig. 6). While
the marginal distribution shows that 41.9% of faculty have their
peak productivity within the first 6 years, with the modal peak
year in year 5, there is substantial variance. Note, for example,
that individuals along the bottom of Fig. 6 published the most
in their first year as faculty, while individuals along the diagonal
published the most in their most recent recorded year as faculty.
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Fig. 5. Heat map of researchers’ inferred change points. Each researcher’s
inferred change-point parameter t⇤ is plotted as a heat map, sorted by the
length of their career in our dataset and restricted to individuals whose
productivity trajectories are both stable under the addition of noise (main
text) and better modeled by Eq. 1 than a straight line, determined by the
AIC (Model Selection). params, parameters.
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Fig. 4. Distribution of individuals’ productivity trajectory parameters. Diverse trends in individual productivity fall into four quadrants based on their slopes
m1 and m2 in the piecewise linear model Eq. 1. Plots show example publication trajectories to illustrate general characteristics of each quadrant. The shaded
triangular region (Bottom Center) corresponds to the conventional narrative of early increase followed by gradual decline. Color distinguishes trajectories
in two classes: those that are stable and nonlinear (orange) and those that are either unstable or linear (gray). The plot at Right describes how researchers
are distributed within these two classes. conv. narrative, conventional narrative; Pub, publication.

Mann–Whitney test). These findings regarding m1 and b com-
bine to suggest that current academic environment correlates
with—and perhaps influences—productivity, while prior aca-
demic environment does not. Finally, faculty at top-ranked
departments are statistically no more or less likely to be found
within this triangular region, a result robust to alternative cutoffs
for “top-ranked” institutions.

The relationship between trajectories and gender is more com-
plicated. First, trajectories of male and female researchers were
similarly distributed across the four quadrants (P =0.94, �2

test), and gender was uncorrelated with the likelihood of meet-
ing the four criteria of the canonical narrative (P =0.39, �2 test).
Further, within this canonical subset, the women’s initial produc-
tivity grew at a rate indistinguishable from the men’s (P =0.15,
Mann–Whitney test) and peaked in similar years (P =0.305,
Kolmogorov–Smirnov test). Women’s initial productivity, how-
ever, was 0.46 publications lower than the men’s (P =0.032,
Mann–Whitney test) in general, and this difference exists despite
the fact that men and women in this subset trained and were
hired at similarly ranked institutions (P > 0.05, Kolmogorov–
Smirnov test) and completed postdoctoral training at similar
rates (P =0.89, �2 test).

The change point within a career may indicate regime shifts in
productivity, regardless of which type of trajectory an individual
may follow. While the change-point parameter t⇤ does not corre-
late with the other parameters of f (t), its distribution reveals that
for most faculty, the inferred change point in productivity rates
occurs at approximately year 5. Fig. 5 translates each selected
faculty member’s career length and inferred change point into
an ordered pair, creating a heat map of career change points.
Shown in the accompanying marginal distribution, the modal
value for t⇤ is year 5 with the median at 6 years, closely preceding
tenure decisions at most institutions. Nevertheless, there is still
rich diversity in career transitions, and the average remains mis-
leading as the descriptor of a majority of individuals. In particu-
lar, faculty at the top 20% of institutions have significantly ear-
lier t⇤ than the remaining 80%, with medians of 4.1 years and 6.4
years, respectively (P < 0.001, Mann–Whitney test). There is no
such difference between the faculty whose doctorates are from

the top 20% of institutions and those whose doctorates are from
the remaining 80% (medians of 5.9 years vs. 6.0 years; P =0.37).

The trends and diversity observed in t⇤ distributions remain
true even when models are avoided entirely. A direct empir-
ical examination of all DBLP and CV publication time series
reveals that a computer science professor’s productivity is also
most likely to peak in the fifth year, yet peak productivity can nev-
ertheless occur in any year of a professor’s career (Fig. 6). While
the marginal distribution shows that 41.9% of faculty have their
peak productivity within the first 6 years, with the modal peak
year in year 5, there is substantial variance. Note, for example,
that individuals along the bottom of Fig. 6 published the most
in their first year as faculty, while individuals along the diagonal
published the most in their most recent recorded year as faculty.
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Fig. 5. Heat map of researchers’ inferred change points. Each researcher’s
inferred change-point parameter t⇤ is plotted as a heat map, sorted by the
length of their career in our dataset and restricted to individuals whose
productivity trajectories are both stable under the addition of noise (main
text) and better modeled by Eq. 1 than a straight line, determined by the
AIC (Model Selection). params, parameters.
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average productivity appears to be predictable — except it’s not 
the conventional narrative only holds for 20.3% of faculty
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Nobel in Physics (1982): phase transitions and renormalization group
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Figure 1: Patterns of productivity during a scientific career. (A) Publication history of 
Kenneth G. Wilson (Nobel Prize in Physics, 1982). The horizontal axis indicates the number of 
years after the scientist’s first publication and each vertical line corresponds to a research paper. 
The height of each line corresponds to !"#, i.e. the number of citations the paper received after 10 
years (SM S1.3 and S1.6). The highest impact paper of Wilson was published in 1974, 9 years 
after his first publication and it is the 17th of his 48 papers, hence -∗ = 9, .∗ = 17, . = 48. (B) 
Distribution of the highest impact paper % !"#∗  across all scientists. We highlight in blue the 
bottom 20% of the area, corresponding to low maximum impact scientists (!"#∗ ≤ 20); the red 
area indicates the high maximum impact scientists (top 5% , !"#∗ ≥ 200); yellow corresponds to 
the remaining 75% medium maximum impact scientists (20 < !"#∗ < 200). These cutoffs do not 
change if we exclude review papers from our analysis (see Fig. S4 and Fig. S36). (C) Number of 
papers . -  published up to time -, for three scientists with low, medium and high impact, but 
comparable final number of papers throughout their career. (D) Distribution of the productivity 
exponents 5 (18). The productivity of high impact scientists grows faster than that of low impact 
scientists. (E) Dynamics of productivity, as captured by the average number of papers 4 -  
published each year for high, average and low impact scientists. - = 0 corresponds to the year of 
a scientist’s first publication.  
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450,000 articles from Physical Review, 1893-2016 
Sinatra et al., Science 354, 596 (2016)
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timing of big discoveries

450,000 articles from Physical Review, 1893-2016 
Sinatra et al., Science 354, 596 (2016)

conventional narrative: scientific creativity peaks early — except it doesn’t 
all publications, ordered first to last
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predicting discoveries
some aspects of science are highly predictable 

most citation counts, institution of origin, maximum impact, etc. 
aggregate trends like CPU speed, solar cell efficiency, battery cost, etc. 
interdisciplinary research is harder to publish & fund 
under-represented groups (women, non-whites) receive less funding, attention, etc. 



predicting discoveries
some aspects of science are highly predictable 

most citation counts, institution of origin, maximum impact, etc. 
aggregate trends like CPU speed, solar cell efficiency, battery cost, etc. 
interdisciplinary research is harder to publish & fund 
under-represented groups (women, non-whites) receive less funding, attention, etc. 

other aspects appear fundamentally unpredictable 
productivity over a career, timing of biggest discovery, etc. 
long-term impact of proposed project or manuscript 
what discoveries are not being made because of our focus on predictability? 
predicting discovery is just. plain. hard. (even for humans)



some aspects of science are highly predictable 
other aspects appear fundamentally unpredictable 

the data are crude + biased + noisy + incomplete 
they don’t directly measure knowledge or progress 
poor understanding of mechanisms that drive scientific discovery 
social and scientific, individual and structural 
why are some things predictable, and others not? 
predicting new discoveries is a form of extrapolation = hard 
even expert humans struggle! should we expect dumb machines to do better?

predicting discoveries



science is a large and diverse ecosystem 
this diversity is a key part of its continued success 
machine learning could expand or contract it 
can we adapt diversity ideas from ecology and evolutionary theory?              
design principles of robustness, diversifying selection, stabilizing feedback, etc. 

if discovery is inherently unpredictable, better to cultivate a diverse 
scientific ecosystem than try to automate its prediction 

"novel discoveries are valuable precisely because they have never been seen 
before, while data-driven prediction techniques can only learn about what’s 
been done in the past"

looking forward



a role for machine intelligence

ESSAY

Data-driven predictions in
the science of science
Aaron Clauset,1,2* Daniel B. Larremore,2 Roberta Sinatra3,4

The desire to predict discoveries—to have some idea, in advance, of what will be
discovered, by whom, when, and where—pervades nearly all aspects of modern science,
from individual scientists to publishers, from funding agencies to hiring committees. In this
Essay, we survey the emerging and interdisciplinary field of the “science of science”
and what it teaches us about the predictability of scientific discovery. We then discuss
future opportunities for improving predictions derived from the science of science and its
potential impact, positive and negative, on the scientific community.

T
oday, the desire to predict discoveries—to
have some idea, in advance, of what will be
discovered, by whom, when, and where—
pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
The more predictable we can make the process
of scientific discovery, the more efficiently those
resources can be used to support worthwhile
technological, biomedical, and scientific advances.
Despite this pervasive need, our understand-

ing of how discoveries emerge is limited, and
relatively few predictions by individuals, publish-
ers, funders, or hiring committees are made in a
scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
scientists make progress on individual scientific
challenges, see (1).]

Interest in predicting discoveries stretches
back nearly 150 years, to work by the philosopher
Boleslaw Prus (1847–1912) and the empirical soci-
ologist Florian Znaniecki (1882–1958). Znaniecki,
in particular, called for the establishment of a data-
driven study of the social processes of science. For
most of the 20th century, progress toward this
goal came slowly, in part because good data were
difficult to obtain and most people were satisfied
with the judgment of experts.
Today, the scientific community is a vast and

varied ecosystem, with hundreds of loosely inter-
acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
This daunting size and complexity has broadened
the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
questions (2, 3). It is now widely believed that
exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
These efforts raise a provocative question:Will

we eventually be able to predict important dis-
coveries or their discoverers, such as Yoshinori
Ohsumi’s Nobel Prize–winning work on the au-
tophagy systeminanimal cells?Wedonot yet know
the answer, but work toward one will substantially
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Fig. 1. How unexpected is a discovery? Scientific discoveries vary in how unexpected they were relative to existing knowledge. To illustrate this perspective,
17 examples of major scientific discoveries are arranged from the unanticipated (like antibiotics, programmable gene editing, and cosmic microwave background
radiation) to expected discoveries (like the observation of gravitational waves, the structure of DNA, or the decoding of the human genome).
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probably not automatable 

machines: interpolation 
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discovered, by whom, when, and where—
pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
The more predictable we can make the process
of scientific discovery, the more efficiently those
resources can be used to support worthwhile
technological, biomedical, and scientific advances.
Despite this pervasive need, our understand-

ing of how discoveries emerge is limited, and
relatively few predictions by individuals, publish-
ers, funders, or hiring committees are made in a
scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
scientists make progress on individual scientific
challenges, see (1).]

Interest in predicting discoveries stretches
back nearly 150 years, to work by the philosopher
Boleslaw Prus (1847–1912) and the empirical soci-
ologist Florian Znaniecki (1882–1958). Znaniecki,
in particular, called for the establishment of a data-
driven study of the social processes of science. For
most of the 20th century, progress toward this
goal came slowly, in part because good data were
difficult to obtain and most people were satisfied
with the judgment of experts.
Today, the scientific community is a vast and

varied ecosystem, with hundreds of loosely inter-
acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
This daunting size and complexity has broadened
the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
questions (2, 3). It is now widely believed that
exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
These efforts raise a provocative question:Will

we eventually be able to predict important dis-
coveries or their discoverers, such as Yoshinori
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tophagy systeminanimal cells?Wedonot yet know
the answer, but work toward one will substantially
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current AI is "dumb" = no model of mind, no physical intuition, no understanding, no thinking 
machines don’t know what questions to ask = most useful for "expected" discoveries 
but that’s okay. 
science among the machines will be a grand story of collaboration

knowledge production ("science") 
is a complex social system 
probably not automatable 

machines: interpolation 
science   : extrapolation 

current AI requires huge amount 
of human pampering (training 
data, tuning, maintenance, 
improvement)

a role for machine intelligence
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oday, the desire to predict discoveries—to
have some idea, in advance, of what will be
discovered, by whom, when, and where—
pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
The more predictable we can make the process
of scientific discovery, the more efficiently those
resources can be used to support worthwhile
technological, biomedical, and scientific advances.
Despite this pervasive need, our understand-

ing of how discoveries emerge is limited, and
relatively few predictions by individuals, publish-
ers, funders, or hiring committees are made in a
scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
scientists make progress on individual scientific
challenges, see (1).]

Interest in predicting discoveries stretches
back nearly 150 years, to work by the philosopher
Boleslaw Prus (1847–1912) and the empirical soci-
ologist Florian Znaniecki (1882–1958). Znaniecki,
in particular, called for the establishment of a data-
driven study of the social processes of science. For
most of the 20th century, progress toward this
goal came slowly, in part because good data were
difficult to obtain and most people were satisfied
with the judgment of experts.
Today, the scientific community is a vast and

varied ecosystem, with hundreds of loosely inter-
acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
This daunting size and complexity has broadened
the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
questions (2, 3). It is now widely believed that
exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
These efforts raise a provocative question:Will

we eventually be able to predict important dis-
coveries or their discoverers, such as Yoshinori
Ohsumi’s Nobel Prize–winning work on the au-
tophagy systeminanimal cells?Wedonot yet know
the answer, but work toward one will substantially
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language      , writing      , mathematics      , democracy      , science      , computers      …

science is probably not automatable 
machines: interpolation 
science   : extrapolation 

solution = collaboration 
humans   : design, build, decide, interpret, extrapolate 
machines : collect, scale, calculate, estimate, interpolate 

hybrid approaches will extend human control of natural and 
artificial processes in seemingly magical ways and                                           
it will change humans in the process 

a secret: this is history!       not the future. 
every revolutionary technology has been a super power that 
changes humans:

a role for machine intelligence

+



science is a large and diverse ecosystem 
this diversity is a key part of its continued success 
machine learning could expand or contract it 
can we adapt diversity ideas from ecology and evolutionary theory?              
design principles of robustness, diversifying selection, stabilizing feedback, etc. 

if discovery is inherently unpredictable, better to cultivate a diverse 
scientific ecosystem than try to automate its prediction 

"novel discoveries are valuable precisely because they have never been seen 
before, while data-driven prediction techniques can only learn about what’s 
been done in the past"

looking forward (again)



Dr. Samuel F. Way

(Colorado)

Dr. Allison C. Morgan

(Colorado)

Prof. Daniel B. Larremore

(Colorado)

Prof. Aaron Clauset

(Colorado)

Prof. Roberta Sinatra

(ITU Copenhagen)

ESSAY

Data-driven predictions in
the science of science
Aaron Clauset,1,2* Daniel B. Larremore,2 Roberta Sinatra3,4

The desire to predict discoveries—to have some idea, in advance, of what will be
discovered, by whom, when, and where—pervades nearly all aspects of modern science,
from individual scientists to publishers, from funding agencies to hiring committees. In this
Essay, we survey the emerging and interdisciplinary field of the “science of science”
and what it teaches us about the predictability of scientific discovery. We then discuss
future opportunities for improving predictions derived from the science of science and its
potential impact, positive and negative, on the scientific community.

T
oday, the desire to predict discoveries—to
have some idea, in advance, of what will be
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pervades nearly all aspects of modern sci-
ence. Individual scientists routinely make

predictions about which research questions or
topics are interesting, impactful, and fundable.
Publishers and funding agencies evaluate man-
uscripts and project proposals in part by predicting
their future impact. Faculty hiring committees
make predictions about which candidates will
make important scientific contributions over

the course of their careers. And predictions are
important to the public, who fund the majority
of all scientific research through tax dollars.
The more predictable we can make the process
of scientific discovery, the more efficiently those
resources can be used to support worthwhile
technological, biomedical, and scientific advances.
Despite this pervasive need, our understand-

ing of how discoveries emerge is limited, and
relatively few predictions by individuals, publish-
ers, funders, or hiring committees are made in a
scientific way. How, then, can we know what is
predictable and what is not? Although it can be
difficult to separate the discovery from the dis-
coverer, the primary focus of this Essay is the
science of science: an interdisciplinary effort to
scientifically understand the social processes that
lead to scientific discoveries. [For the current
thinking on the philosophy of science and how
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Interest in predicting discoveries stretches
back nearly 150 years, to work by the philosopher
Boleslaw Prus (1847–1912) and the empirical soci-
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difficult to obtain and most people were satisfied
with the judgment of experts.
Today, the scientific community is a vast and
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acting fields, tens of thousands of researchers,
and a dizzying number of new results each year.
This daunting size and complexity has broadened
the appeal of a science of science and encouraged
a focus on generic measurable quantities such as
citations to past works, production of newworks,
career trajectories, grant funding, scholarly prizes,
and so forth. Digital technology makes such in-
formation abundant, and researchers are devel-
oping powerful new computational tools for
analyzing it—for instance, to extract and catego-
rize the content of papers in order to automat-
ically quantify progress on specific scientific
questions (2, 3). It is now widely believed that
exploiting this information can produce predic-
tions that are more objectively accurate than ex-
pert opinions. Bibliographic databases and online
platforms—Google Scholar, PubMed, Web of Sci-
ence, JSTOR, ORCID, EasyChair, and “altmetrics,”
to name a few—are enabling a new generation
of researchers to develop deeper insights into
the scientific process.
These efforts raise a provocative question:Will

we eventually be able to predict important dis-
coveries or their discoverers, such as Yoshinori
Ohsumi’s Nobel Prize–winning work on the au-
tophagy systeminanimal cells?Wedonot yet know
the answer, but work toward one will substantially
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17 examples of major scientific discoveries are arranged from the unanticipated (like antibiotics, programmable gene editing, and cosmic microwave background
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