Human and Machine Intelligence in Medicine

Sendhil Mullainathan
University of Chicago
Story 1
A common dilemma

Test for heart attack?

Chest pain Trouble breathing Nausea ...

Easy but inconclusive tests

Electrocardiogram Labs

Stress test Catheterization
Why test for recent heart attack?

- Immediate and delayed consequences
 - Is 10–20% fatal
 - Long-term complications

- Treatment is effective
 - Stenting, bypass surgery
 - RCTs: ~50% reduction in mortality and sequelae
Can we build an algorithm? A decision-aid

• Predict given (some of) what physician sees…

• Whether a patient will have a positive stress test or catheterization

• Will help us understand mistakes in testing
Yield of testing vs. algorithm-predicted risk

- Top decile: 52.0%
- Lowest decile: 1.8%
- Average: 57% untested
- Overtesting! Can eliminate a lot of wasteful tests
- Undertesting?
- >$800k/life year
- <$70k/life year

Average
Adverse events + death in the untested (30 days after visit)

30 Day Outcomes

- Diagnosed with something else
- Or sent home

Clinical decision threshold

All patients
Diagnosis

• Conversation is around over-use

• In actuality there’s a lot of both over and under use

• Algorithms can see things we can’t
What happens when we change behavior?

- Cutting valuable tests
- Cutting wasteful tests
- Throwing out baby with bathwater

Graph showing:
- Testing rate vs Predicted risk quintile
- High-testing triage shifts
- Low-testing triage shifts
- Also cutting valuable tests
Diagnosis

• Conversation is around over-use

• In actuality there’s a lot of both over and under use

• Algorithms can see things we can’t

• Can even lead us to rethink the underlying source of the problem

• Decision-aids can make a big difference
Story 2
Care Coordination Programs

• Patients with many chronic conditions are an epicenter of costs

• Programs target them with extra resources

• To target patients an algorithm is used
 – Already at scale, > hundred million patients

Measuring Racial Inequity

• Access to one live, scaled private sector algorithm
 – One of the largest of a group of providers (~10 mill)

• Consequences for who gets in the program
 – What kinds of *Whites* and *Black* would be chosen for program (in terms of health)

• Since program allocated by level of score S, we can ask…
 – Two patients, same risk score: one back and one white
 – Who is sicker?
We studied Racial ‘Bias’

New York Regulator Probes UnitedHealth Algorithm for Racial Bias
The Wall Street Journal · Oct 26 · Satire

Senators Protest a Health Algorithm Biased Against Black People
WIRED · Mar 12, 2019

- Principle: Same score – Treated the same – Should have same needs
- Color of their skin should not matter
- How much bias? – Auto-enroll today: 18% Black – Without bias: 47% Black
Dissecting the Inequity

• Where is the algorithm going wrong?

• One clue is in where it is going right
Where is algorithm going wrong?

Algorithm well calibrated by race for total health utilization
The Problem of Predicting Utilization

- Blacks and whites do not have the same relation between health status and utilization.

- Whites have better access to health care.

- At every level of health, blacks utilize less health care.

- So accurate utilization prediction = biased health prediction.
Dissecting The Problem

• Proximal cause: the *Label*
 – Algorithm optimized objective it was given
 – But that’s not our full objective

• Deeper cause –
 – Why was costs chosen and not health?

• Utilization and Health are often used synonymously
Story 3
Knee Pain

• Osteoarthritis most common joint disorder in US
• 10% of men over 60 and 13% of women over 60 have knee osteoarthritis

Disadvantaged patients experience more pain…

<table>
<thead>
<tr>
<th></th>
<th>Pain gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td>10.6 (8.3, 12.9)</td>
</tr>
<tr>
<td>Income</td>
<td>4.2 (2.8, 5.6)</td>
</tr>
<tr>
<td>Education</td>
<td>5.3 (3.7, 6.7)</td>
</tr>
</tbody>
</table>
Why is there a Pain Gap?

• “Inside their knees”
 – Physical ailments more extreme

• “Outside their knees” – non-knee-related factors mean that the same physical knee problem results in more pain in some groups
 – Life stress (eg, tough bus-driving job)
 – Less access to pain medication
 – Different pain-coping strategies
 – Less social support
Disadvantaged experience more pain.

<table>
<thead>
<tr>
<th></th>
<th>Pain gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td>10.6 (8.3, 12.9)</td>
</tr>
<tr>
<td>Income</td>
<td>4.2 (2.8, 5.6)</td>
</tr>
<tr>
<td>Education</td>
<td>5.3 (3.7, 6.7)</td>
</tr>
</tbody>
</table>

Even when controlling for severity
Disadvantaged experience more pain….

<table>
<thead>
<tr>
<th></th>
<th>Pain gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td>10.6 (8.3, 12.9)</td>
</tr>
<tr>
<td>Income</td>
<td>4.2 (2.8, 5.6)</td>
</tr>
<tr>
<td>Education</td>
<td>5.3 (3.7, 6.7)</td>
</tr>
</tbody>
</table>

$pain \sim race + KLG$

regress pain on race and KLG

pain gap = race coefficient when controlling for KLG

Even when controlling for severity
Disadvantaged experience more pain….

<table>
<thead>
<tr>
<th></th>
<th>Pain gap (no controls)</th>
<th>Pain gap (control for KLG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td>10.6 (8.3, 12.9)</td>
<td>9.7 (7.4, 11.9)</td>
</tr>
<tr>
<td>Income</td>
<td>4.2 (2.8, 5.6)</td>
<td>3.5 (2.3, 4.9)</td>
</tr>
<tr>
<td>Education</td>
<td>5.3 (3.7, 6.7)</td>
<td>4.9 (3.5, 6.2)</td>
</tr>
</tbody>
</table>

\[
pain \sim race + KLG
\]

regress pain on race and KLG
pain gap = race coefficient when controlling for KLG

Even when controlling for severity
Does this settle the matter?

- Medical knowledge is, for most thing, still in flux
 - It’s why we are still doing the science

- We know we don’t understand pain that well. KLG doesn’t explain pain well ($R^2 = 0.10$).

- Maybe there is something in the knees we don’t know about?

- Are there overlooked physical features in the knee which explain the higher pain levels in disadvantaged groups?
Using ML for Discovery

• Train convolutional net to predict pain from knee x-rays

• Input: image of both knees

• Output: predict Koos pain score in the knee

• Key: Algorithm only sees x-rays
 – Does not have access to other pieces of information that may predict pain e.g. lab values that signal inflammatory measure

Pain score: 83.3
Algorithm finds signal that reduces gap

Implication:
Overlooked signal in knee x-ray which helps explain disadvantaged patients’ higher pain

In their knees
What patients have been trying to tell us all along!

Algorithms a force for equity
Lessons

1. Data not algorithms the scarce resource
This is more and more commoditized

Very little difference in performance by skill

Auto ML
Teachable Machine

Train a computer to recognize your own images, sounds, & poses.

A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required.

Get Started
The scarce resource

• Technical skill still important in some cutting edge problem

• But it’s sufficiently diffused that the real edge here goes to…

• Finding the right problem

• Having the right data
 – In medicine, this is the biggest bottleneck
Lessons

1. Data not algorithms the scarce resource

2. AI breaks because the data is broken
Google team - Image Pathology Model

An Example from Mukund Sundarajan

Algorithm to detect pathologies in chest xrays

Very successful –

Team got interested in “What is algorithm looking at?”
Pathology Detector

Zoom in and adjust contrast

What is this?
Pathology Detector

Radiologists penmarks to note problems
Algorithm detected penmarks not pathologies

Why here?
Performance was high

Very misleading

The algorithm is only as good as the data

The data itself was misunderstood
Bugs in Data

• We recognize (and fear) bugs in code
 – We think the code is doing on thing
 – But it is actually doing something else

• ML systems have code as well
 – But these don’t break
 – All AI failures I know of, the algorithm did exactly what it was asked to do

• Their real code is the training data
 – This is where bugs arise.
 – We think the data is one thing
 – But it is actually something else

• Who is responsible for debugging?
 – Those who know the data! Not the data scientist.
Data breakage

• Is the label the one you wanted?
 – Racial bias in care coordination programs

• Is the data representative of deployment?
Lessons

1. Data not algorithms the scarce resource

2. AI breaks because the data is broken

3. Unrepresentative data
Research Letter

September 22/29, 2020

Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms

Amit Kaushal, MD, PhD¹; Russ Altman, MD, PhD¹; Curt Langlotz, MD, PhD²

Fifty-six studies (76%) trained algorithms using at least 1 geographically identifiable cohort. Cohorts from California appeared in 22 of the 56 studies (39%), cohorts from Massachusetts in 15 (27%), and cohorts from New York in 14 (25%) (Table). Forty of 56 studies (71%) used a patient cohort from at least 1 of these 3 states. Among the remaining 47 states, 34 did not contribute any patient cohorts, and the remainder contributed between 1 and 5 cohorts (Table).
Unrepresentative Data

- Even human knowledge is based on unrepresentative data

- Why do KL scores under-recognize pain in disadvantaged?

- Another kind of unrepresentative:
 - Academic medical centers
Lessons

1. Data not algorithms the scarce resource

2. AI breaks because the data is broken

3. Unrepresentative data

4. Prediction not Emulation
Two Different Approaches

KOOS pain score

Physician Judgment (KL Grade)
Choice of Label

Pain score
Prediction
Highest return

KL Grade
Automation
Most of ML in Medicine
Some cost savings
Automate errors
Lessons

1. Data not algorithms the scarce resource

2. AI breaks because the data is broken

3. Unrepresentative data

4. Prediction not Emulation