GoldLab Symposium Boulder CO, May 18-20, 2023

> From Skeletal Rare Diseases to Treatment for All, and Back:

The Saga of Sclerostin's Inhibition

OI Type, CO,

Roland Baron Harvard Medical School, Boston, USA

Original image Choi RB, et al. JBMR Plus 2021;5:e10462.

Disclosures

- <u>Advisory Boards</u>: Radius Health, OsteoPharma, Bone-Tech, Mesentech, Beryl Health, Curelab Oncology, XY Therapeutics, Ankasa Regenerative Therapeutics
- Lecturing: Amgen, Astellas, UCB
- <u>Consulting</u>: Flagship 75, Home Biosciences
- <u>Research funding</u>: NIH, Radius Health, Sophie's Neighborhood

Osteocytes:

The Most Abundant Cell in One of the Largest Organs in the Body

The Osteocytes

Robling and Bonewald, Ann Rev Physiol, 2020

Bone Formation Surface With Osteoblasts

Enriched in Alkaline Phosphatase Secrete Collagen and Matrix components

Bone Resorbing Surface with Osteoclasts

Baron R. and Kneissel M., Nature Medicine, 2013

The Bone Remodeling Sequence

Adapted from Langdahl, Brit. J. Pharmacol. 2020

How is Bone Remodeling Regulating Bone Mass?

Baron R, unpublished

Quiescent Surface with Lining Cells

Adult Bone Mass is Regulated by Both Remodeling and Modeling

Baron R, unpublished

Modeling and Remodeling Are Important

 To allow adaptation to local and systemic changes (increase or decrease BMD, adapt microstructure to load, allow storage/mobilization of calcium and Phosphate)

 To renew bone matrix components and osteocytes while maintaining skeletal homeostasis, i.e. bone mass

Progression of Osteoporosis – Three Generations

Photo credit: Geoff Higgs, MD, courtesy eMotion pictures – An Exhibition of Orthopedics in Art

Remaining lifetime fracture risk (%) in Caucasian population at the age of 50

Type of Fracture	Men	Women	
Forearm	4.6	20.8	
Нір	10.7	22.9	
Spine	8.3	15.1	
Proximal humerus	4.1	12.9	
Any	22.4	46.4	

All fractures are associated with morbidity

Patients (%)

Cooper C, Am J Med, 1997;103(2A):12S-17S

Anti-Resorptives Decrease Resorption and Remodeling-based Bone Formation, Slowing Bone Turnover

Baron R, unpublished

Bone Turnover Markers for Alendronate or Denosumab Phase 2: Postmenopausal Women with Low BMD

How Current Treatments Affect Bone Remodeling and Bone Mass?

Absence or Reduction of Sclerostin Lead To High Bone Mass (Sclerosteosis)

Sclerosteosis and Van Buchem Syndrome

Increased bone density, thick cortices

- Sclerosteosis: All null mutations in SOST, the gene that encodes sclerostin¹
- Van Buchem syndrome: Promoter deletion with decreased sclerostin expression^{2–4}
- Haplo-insufficient carriers have high bone mass⁵ and no side effects⁶

Balemans W, et al. *Hum Mol Genet*. 2001;10:537–43.
Brunkow ME, et al. *Am J Hum Genet*. 2001;68:577–89.
Balemans W, et al. *J Med Genet*. 2002;39:91–7.
Loots GG, et al. *Genome Res*. 2005;15:928–35.
Gardner MJ, et al. *Arthritis Rheum*. 2006;54:1961–73.
Papapoulos S, et al. *J Bone Miner Res*. 2012;27:694–701.

HBM phenotype linked to mutations in LRP5 that decrease sclerostin inhibition on canonical WNT signaling

HBM, high bone mass; LRP5; low-density lipoprotein receptor-related protein 5; OPPG, osteoporosis-pseudoglioma syndrome; WNT, wingless-related integration site.

Gong Y, et al. *Cell* 2001;107:513-23; Little RD, et al. *Am J Hum Genet* 2002;70:11-19.

Source: Sclerostin is predominantly expressed in osteocytes and its dendrites

The HBM alleles knocked-in in Osteocytes recapitulate the human HBM phenotype

The osteocyte and lining cells are the centerpiece of WNT signaling and sclerostin effects in bone

Receptors, Ligands and Inhibitors of WNT signaling

Baron R. and Gori F., Curr Opin in Pharmacology, 2018

How is sclerostin expression regulated?

Mechanical Loading Decreases Sclerostin Protein Levels, Favoring Bone Formation

Department of Orthopedic Surgery, BIDMC, Harvard Medical School Division of Endocrinology, MGH; Bioastronautics Program, MIT-HST

Funded by NASA NNX10AE39G and Amgen/UCB

PTH represses sclerostin expression

O'Brien EP, et al. *Proc Natl Acad Sci USA* 2008;105:13403-408; Kramer I, et al. *Trends Endocrinol Metab* 2010;21:237-44; Wein M, et al. *Nat Commun* 2016;7:13176. Mechanisms of action of sclerostin inhibition

Sclerostin Inhibition Enhances Canonical WNT signaling: Dual action on Bone

integration site.

Adapted from Baron R, and Rawadi G. Endocrinology 2007;148:2635-43.

Sclerostin inhibition: Dual action

integration site.

Adapted from Baron R, and Rawadi G. Endocrinology 2007;148:2635-43.

Effect of a single sclerostin antibody injection on bone markers in humans

CTX, C-terminal telopeptide of type 1 collagen; P1NP, procollagen type 1 N-terminal propeptide; SC, subcutaneous.

Padhi D, et al. J Bone Miner Res 2010;26:19-26.

ScI-Abs make lining cells along quiescent bone surfaces become active osteoblasts

Ominsky MS, et al. *Bone* 2015;81:380-91; Eda H, et al. *J Bone Miner Res* 2016;31:1225-34; Matic I, et al. *Stem Cells* 2016;34:2930-42.

Baron R. unpublished

Changes in BMD with Romosozumab

Placebo 📥 ALN 💻 TPTD 🔶 Romosozumab 210 mg QM

Lumbar Spine

Total Hip

Mc Clung et al., NEJM 2013

Month

Data are LS means and 95% Cls. *P* values are only shown for the romosozumab 210 mg QM group.

ScI-Abs, Through Modeling, Favor Trabecular Bone Microarchitecture

Romosozumab induces Modeling in the Cortex Along the Periosteum and Endosteum

1. Adapted from Langdahl BL, et al. *Lancet*. 2017;390(Suppl):1585–94. 2. Adapted from Langdahl B, et al. ECTS 2017. Presentation OC1.5. 3. Image adapted from Ominsky MS, et al. J *Bone Miner Res*. 2017;32:788–801.

Romosozumab: Fracture reduction in FRAME and ARCH Clinical Trials

Cosman F. et al., New England J Med 2016; Saag G. et al., New England J Med, 2017

© 2019 Amgen Inc. All rights reserved. © 2019 UCB Group of Companies. All rights reserved.

Amgen and UCB Confidential. Do not copy or distribute.

FRAME Phase 3 study: Despite Continued Treatment the Increase in Bone Formation Marker Fades Out

CTX: romosozumab n = 61; placebo n = 62.

Data presented as bootstrapped median treatment difference and 95% Cl.

 β -CTX, β -isomer of C-terminal telopeptide of type 1 collage; CI, confidence interval; P1NP, procollagen type 1 N-terminal propeptide.

Lumbar Spine and Total Hip BMD Declined Towards Baseline After Discontinuation of Romosozumab Treatment¹

*Randomized treatment group up to month 24. Romosozumab 210 mg QM (N = 40), pooled placebo (N = 36). Results include only subjects re-randomized at month 24. Data are means and 95% CI. BL=baseline; BMD=bone mineral density; CI=confidence interval; Q6M=once every 6 months; QM=once monthly

1. Adapted from: McClung MR, et al. J Bone Miner Res. 2018;33:1397-1406.

 $\ensuremath{\mathbb{C}}$ 2019 Amgen Inc. All rights reserved. $\ensuremath{\mathbb{C}}$ 2019 UCB Group of Companies. All rights reserved.

LRP4 is in Osteocytes, Enhances Sost Inhibition of LRP5 And LRP4 Mutations or Inhibition Increase Bone Mass

Forced expression of LRP4 enhances the ability of SOST to inhibit WNT signaling

Leupin et al., JBC 2011

Cortical-Bone Fragility — Insights from sFRP4 Deficiency in Pyle's Disease

Pyle Disease: sFrp4 null sFrp4 null Mice

Kiper, Saito et al., NEJM 2016

Mutations in WNT1 are a cause of osteogenesis imperfecta

Somayyeh Fahiminiya,¹ Jacek Majewski,¹ John Mort,² Pierre Moffatt,² Francis H Glorieux,² Frank Rauch²

Mutations in *WNT1* Cause Different Forms of Bone Fragility Keupp et al., Am J Hum Gen 2013

WNT1 Mutations in Families Affected by Moderately Severe and Progressive Recessive Osteogenesis Imperfecta

Pyott et al., Am J Hum Gen 2013

WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta Laine et al. NEJM, 2013

J Med Genet 2013;50:345–348.

 \sim

WNT Signaling is essential!

Other Rare Skeletal Diseases Have Been Successfully Treated in the Last Few Years

- Hypophosphatasia Alkaline Phosphatase Asfotase α (Strensiq)
- Achondroplasia FGF3 Receptor vosoritide (Voxzogo)
- X-Linked Hypophosphatemia Phex/FGF23 Burosumab (Cryssvita)
- Osteogenesis Imperfecta II/III Collagen

Setrusumab

Many other skeletal rare diseases are not yet fully understood or treated

Multicentric Carpo-Tarsal Osteolysis (MCTO) Mouse Model (*MafB Pro59Leu* KI) S. Takahashi

4 week old female mice

4 week old female mice

Thank you for your attention!