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Digital Twins and the 
Discovery of New Drugs for 
Rare Diseases



What problems do we have to solve to cure rare and other diseases?

“What is the right drug 
target?”

“What is the right drug 
against the right 

target?”

“Which patients will 
respond to this drug?”
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Where can AI play a transformative role in solving these problems?



AI has made significant strides in drug design, including the optimization of 
small molecule  and antibody design
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… but has struggled to make progress in discovering the right drug target and 
finding the right patient populations

Source: Nature

Clinical trials success rates are ~8% across all indications
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Why has so little progress been made 
in using AI to discover and validate novel targets

 and better select patients for clinical trials?
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Genetic circuitry in cell replication of cancer 



95 % of Circuitry is 
Unknown!
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Genetic circuitry in cell replication of cancer 
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Trends in human multi-omic data have reached a tipping point 

Cost of next-generation 
sequencing has decreased 
dramatically, leading to the 

creation of multi-omic 
disease databases

Cost of next-generation 
sequencing has decreased 
dramatically, leading to the 

creation of multi-omic 
disease databases

Decreasing Genome Sequencing Costs
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Likewise, there’s been an exponential increase in computing power

Rise in Computing Power over Time
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Gemini Digital 
Twins (Aitia) Computing power has 

reached critical 
efficiency to support 

roughly 3000 
exaFLOPs



AI shifts gear with the emergence of causal AI
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Nobel Prize Illustration by Niklas Elmehed

AI Shifts Gear with the Emergence of Causal AI

“To reach the higher fruit, AI 
needs a ladder, which we call 
the Ladder of Causation”

-Judea Pearl

2011 Turing Prize

Causality and Natural 
Experiments: 

the 2021 Nobel Prize in 
Economic Sciences

Causal AI has emerged as the next frontier in AI, marking a 
pivotal shift as the importance of understanding causal 

relationships becomes evident

Causal AI to Reverse Engineer the Hidden 95% 
of the Biological Circuitry

Aitia has created REFS, the most powerful causal AI and 
simulation platform for drug discovery and development; 

and holds the founding issued patents

Correlation: Answers the question 
“What happens when I see”

Causation: Answers the question 
 “What happens when I do”

Unlike correlation, which asks ‘is A related to B?’, causal 
inference tests – in parallel – a vast number of hypotheses of 

the form ‘does A cause B?’

A B

Causal AI creates increasingly accurate replicas of human disease that learn directly from 
human multi-omic data, instead of outdated animal models and in vitro systems



What are Gemini Digital Twins?

Gemini Digital Twins are computational representations of disease that capture genetic and 
molecular interactions that causally drive clinical and physiological outcomes

Causal Artificial Intelligence
REFS, Aitia’s proprietary causal AI 
and simulation platform identifies 
the true drivers and underlying 
biological mechanisms of human 
disease

Multi-Omic Human Datasets
Human model systems for human 

therapeutics

Advances in Supercomputing
Run more computational experiments faster and more accurately 

( 5x greater than AlphaFold levels)

11

Clinical outcomes 

Clinical parameters

Cytogenics

Immunoglobulin profiles

miRNAseq

RNAseq

WGS

MMRF CoMMpass Study Data



Performing  In Silico Gene and 
Protein Knockdowns

How Aitia uses the Gemini Digital Twins to simulate billions of ‘experiments’ to 
discover novel drug targets and biomarkers of response

• Performs interventions in a proxy of human patients that has become more accurate than animal models or cell lines 
• Discovers novel drug targets and biomarkers of response orders of magnitude faster and cheaper than in wet labs
• Cross validates novel drug targets and biomarkers in other patient data-derived Gemini Digital Twins

Good potential drug target Poor potential drug target
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Clinical outcomes 

Clinical parameters

Cytogenics

Immunoglobulin profiles

miRNAseq

RNAseq

WGS

MMRF CoMMpass Study Data

Rich Data 

Building a Multiple Myeloma Gemini Digital Twin from multi-omic patient data

13

Multiple Myeloma Digital Twin

Demographics

RNA-Seq
Lab measurements
Treatment
Outcome

Somatic Mutations

Multiple Myeloma Subnetwork



Discovering patient populations for SCT that extends PFS by 20 months
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CHEK1 as the top driver predicting progression-free 
survival (PFS) benefit from Stem Cell Therapy (SCT)

IA9; CHEK1 < 10.3

IA9; CHEK1 > 10.3

No transplant

Transplant

Results published at the 59th ASH Annual Meeting

Results were validated out of cohort in a randomized 
control trial at Dana Faber

IA9; CHEK1 < 10.3

No transplant

Transplant

IA9; CHEK1 > 10.3

https://myelomaresearchnews.com/news/biomarker-detects-which-myeloma-patients-will-benefit-from-stem-cell-transplant/
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Rare Diseases: 
With single gene causes, 
can we determine the 
cures? 



Sickle Cell Disease

Huntingtin 
Gene

Normal Huntington’s
MUTATION

Huntingtin 
Protein

Huntington’s Disease

While the cause of these rare diseases with single gene mutations is relatively 
straightforward, treatment has been elusive

Example of rare diseases and their single gene causes
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The cause is not always the cure

17

Gene therapy has shown promise, but in most rare diseases, intervention is more 
challenging due to the complex mechanisms of disease



1988
Huntingtin (HTT), the first 

disease-associated gene to be 
molecularly mapped to a 

human chromosome by Jim 
Gusella and team

1872

First Patient with 
Huntington’s Described by 

George Huntington

From the first Huntington’s patient to the discovery of the causal gene 
mutation, our understanding of Huntington’s disease has advanced
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In 1983, Jim Gusella and team mapped Huntingtin (HTT) 
as the first disease-associated gene to be molecularly 
mapped to a human chromosome

Jim Gusella

Source: Gusella et al. 1983

Mapping the Huntingtin gene to human chromosome 4

Figure: Pedigree of an American Huntington’s Disease Family (Gusella et al., 1983). 
Provided the statistical support for the mapping of HTT to human chromosome 4

Family studies showed that the HTT gene is linked to a 
polymorphic DNA marker that maps to human chromosome 4
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1988
Huntingtin (HTT), the first 

disease-associated gene to be 
molecularly mapped to a 

human chromosome by Jim 
Gusella and team

1993

MacDonald and team 
identified CAG repeat 
expansion as the HD-

associated mutation in HTT

1872

First Patient with 
Huntington’s Described by 

George Huntington

From the first Huntington’s patient to the discovery of the causal gene 
mutation, our understanding of Huntington’s disease has advanced
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CAG repeat on HD chromosomes is expanded 
relative to normal chromosomes 

Source: MacDonald et al. 1993

After determining that the HD gene is located on chromosome 4, researchers spent the next 10 years 
to identify the HD gene and to determine the nature of the HD-associated mutation

• They focused on the genes on chromosome 4 
and identified IT15, which they showed was 
transcribed into mRNA

• They then determined the DNA sequence of 
the IT15 gene and identified a region of the gene 
that contained a repeated DNA element 
consisting of three nucleotides, CAG, repeated 
multiple times near the beginning of the gene 

Identifying the HD gene 
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Source: MacDonald et al. 1993

Image Source: Huntingtonsvic.org

• When researchers examined the same region 
of IT15 in other non-HD controls, they found that 
the number of CAG repeats varied from six to 35

CAG repeats of 6 to 35

• Analysis of this same region in the IT15 gene in 
individuals with HD showed that these people 
always had 40 or more CAG repeats

• The researchers thus concluded that the 
trinucleotide repeat expansion in the IT15 gene 
was responsible for HD, and IT15 is now 
called HTT (huntingtin)

CAG repeats > 35

Discovering the causal HTT mutation
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• This repeat expansion leads to the 
production of an abnormal form of the 
huntingtin protein, which is central to 
the neurodegenerative process in HD

CAG repeat expansion greater than 36 eventually lead to development of the 
disease

• Higher degree of CAG repeat is linked 
to faster somatic expansion which is 
linked to worse clinical outcomes

• Faster somatic expansion rate leads 
to an earlier onset and rapid disease 
progression

23



1988
Huntingtin (HTT), the first 

disease-associated gene to be 
molecularly mapped to a 

human chromosome by Jim 
Gusella and team

1993

MacDonald and team 
identified CAG repeat 
expansion as the HD-

associated mutation in HTT

2010s - Present

Development of targeted 
therapies for Huntington’s 

accelerates

1872

First Patient with 
Huntington’s Described by 

George Huntington

1996
First transgenic mouse model 

of Huntington’s disease 
developed

From the first Huntington’s patient to the discovery of the causal gene 
mutation, our understanding of Huntington’s disease has advanced
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Despite being a single-gene disease, the complexity of the 
interacting network is high and most is unknown

Can the Gemini Digital Twin approach lead to the discovery and development 
of a new breakthrough treatment in Huntington’s Disease?

With the cause of Huntington’s Disease discovered over 30 years ago, why is 
the treatment so elusive?

25
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Huntington’s Disease: Discovery of 
a novel target and development of a 
novel treatment



Huntington’s disease multi-omic human data

Enroll-HD: Clinical research 
platform and the world’s 
largest HD observational 
study with n>20,000

HDClarity 
• Multi-site longitudinal CSF and blood 

collection initiative with phenotypic data from 
Enroll-HD (Current n~940)

• Data modalities include genomics, 
proteomics (from SomaLogic) and 
biomarkers (NfL, HTT)

Baseline            1 year               2 year                3 year              4 year                5 year              6 year   

TRACK-ON Track-HD / Track-ON
• Ongoing prospective observational biomarker 

study in participants with premanifest and 
early HD (Current n~360)

• Data modalities include clinical, genomics, 
RNAseq, imaging and biomarker dataTrack-HD & Track-ON: 

Multi-national, longitudinal 
study in premanifest and 
early HD individuals and 
healthy controls 

27



Creating HD Digital Twins from human multi-omic and clinical data

Causal AI (REFS Platform)

A globally optimal 
ensemble of 

networks (1000) 
is generated and 

scored across 
thousands of 

computing nodes

Optimization

B 
C 

A 

C 
A 

α 

A 1

Trillions of individual 
network fragments are 
scored based on the full 

distribution of parameter 
values

Enumeration

Rich HD Patient Data

Baseline 1 year 2 year 3 year 4 year 5 year 6 year

TRACK-HD TRACK-ON

Multi-national, longitudinal study in 
premanifest and early HD individuals and 
healthy controls with around 120 patients 

with all layers of data available

28

HD Gemini Digital Twin



Using HD Digital Twins to discover novel drug targets
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• The HD Digital Twin is a complex, 
interconnected network with 128 
networks, 22,770 nodes, and 
5,383,791 edges*
• Incorporates the human 

multi-omic data alongside 
motor and cognitive 
progression outcomes and 
other common parameters in 
HD to reconstruct known and 
unknown mechanisms

*Nodes represent random variables and edges represent causal relationship between variables

HD Gemini Digital Twin

Biomarkers & Patient 
Demographics Genes Endpoints

SDMT 

TMS 
ISS 

Caudate 

NfL 

Arm RigidityHandedness 

Abbreviations:  SDMT: Symbol Digit Modality Test; ISS: Integrated Staging System; TMS: Total Motor Score  

Age



Individual gene-outcome pairs
• Absolute Cohen’s D↑ → Stronger effect
• Path Frequency↑ → Stronger effect 
• Tail Probability↓ → Stronger effect

Tail probability
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Causal Effect Evidence

Using HD Digital Twins to discover novel drug targets

in silico Experiments
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Drug 
1

SNP
2

RNA
1

RNA
2

Protein
1

Protein
2

Survival

SNP
1

Compare two simulations 
setting:

𝑅𝑁𝐴1 = 𝐻𝑖𝑔ℎ
𝑅𝑁𝐴1 = 𝐿𝑜𝑤

TMS



Target prioritization and refinement 

gen

Target Identification and Prioritization

Novelty
• Limited literature in the 

indication but scientific 
rational in disease 
progression

Druggability
• Is there chemical matter?
• Is it expressed in target tissue?
• Is it a member of the known target 

families?

• Orthogonal evidence for HD 
Targets 

• To infer causality between the 
gene and disease

Mendelian Randomization

Biological Relevance
• Essential in cell lines?
• Functional pathways driving 

the gene
• Functional pathways the gene 

drives
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Lead program in Huntington’s disease with novel target impacting cognition 
and motor function 

32

Network Model From HD Digital Twin

Activate

Target

No EffectEffect from 
Target

Effect to 
Outcome

Both Effects

Biomarker/
measure

Inhibit

KEY

Outcome

*Same genes across the models



Novel target in HD has been genetically validated and is expressed in brain 
tissue

• Genetic validation via Mendelian Randomization – significant 
effect in Mendelian Randomization in brain; testing the gene 
effect on HD age of onset
• Here, a two-Sample MR approach was used, utilizing the 

summary statistics from
• Meta Brain eQTL[de Klein et al., Nature Genetics, 

2023]
• GWAS study for HD Age of onset [GeM-HD, Cell, 

2019].

33

Gene Expression in Tissues

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41588-023-01300-6&data=05%7C02%7Cicaffry%40aitiabio.com%7C5a58928a4c3045b1f03908dc5b115d80%7Ceb8d47094c3140b08960ed26f198fd0b%7C0%7C0%7C638485377351919545%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=MG4IjGagtHoxGRmHdmkZTbNpOza2S1evEkFYis6e6Xs%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41588-023-01300-6&data=05%7C02%7Cicaffry%40aitiabio.com%7C5a58928a4c3045b1f03908dc5b115d80%7Ceb8d47094c3140b08960ed26f198fd0b%7C0%7C0%7C638485377351919545%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=MG4IjGagtHoxGRmHdmkZTbNpOza2S1evEkFYis6e6Xs%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.cell.com%2Fcell%2Ffulltext%2FS0092-8674(19)30739-1&data=05%7C02%7Cicaffry%40aitiabio.com%7C5a58928a4c3045b1f03908dc5b115d80%7Ceb8d47094c3140b08960ed26f198fd0b%7C0%7C0%7C638485377351931581%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=ltHivyjV78YznsjVaci%2BkY73t%2FElrfGVvTn0b5IzZRE%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.cell.com%2Fcell%2Ffulltext%2FS0092-8674(19)30739-1&data=05%7C02%7Cicaffry%40aitiabio.com%7C5a58928a4c3045b1f03908dc5b115d80%7Ceb8d47094c3140b08960ed26f198fd0b%7C0%7C0%7C638485377351931581%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=ltHivyjV78YznsjVaci%2BkY73t%2FElrfGVvTn0b5IzZRE%3D&reserved=0


Lead program against novel target in Huntington’s disease – novelty, genetic 
validation, and biomarkers

34

Fig. 2 – Immunosuppressants affect hNPC proliferation. (A) Proliferative activity of hNPCs upon exposure to four different
immunosuppressants as measured by BrdU incorporation ELISA is shown relative to untreated cells. Data are expressed
as the mean7SEM of 3 independent experiments (np¼significant after Holm–Bonferroni correction, po0.05–0.01 when compared
to untreated control). (B) Proliferation expressed as a percentage of Ki67 and nestin double-immunoreactive hNPCs in expansion.
For each sample, untreated and treated, three randomly selected fields with approximately 90–110 nestin-positive cells were
selected, and Ki67-positive nuclei were counted to estimate the number of proliferating neuroprogenitor cells at 72 h after
treatment. Missing data corresponding to higher concentrations of CsA (10 and 30 lg/ml) and MPA (30 and 100 lg/ml) are due to
robust anti-proliferative effects of these two drugs. (np¼significant after Holm–Bonferroni correction, po0.05–0.01 when
compared to untreated control, n¼3). (C) Amplifying neuroprogenitors are positively stained for Ki67 (red nuclei) in untreated
hNPCs or hNPCs treated with immunosuppressive agents. Representative photomicrographs demonstrating changes of
proliferation under incubation with clinically relevant concentrations of indicated immunosuppressives, as follows: CsA (0.3 lg/ml
cyclosporine A), E (10 ng/ml everolimus), MPA (1 lg/ml mycophenolate), and P (0.2 lg/ml prednisolone). Arrows indicate
proliferating hNPCs (nestinþ and Ki67þ). Arrowheads point to minimum effective concentration (MEC). NPCs nuclei are shown in
blue (DAPI). Scale bar¼50 lm.
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counted in untreated samples (p¼0.045), we could not show a
statistical significance after Holm–Bonferroni correction. MPA treat-
ment demonstrated an obvious decline in the proliferation capacity at
the lower (1 mg/ml) and the upper (10 mg/ml) limits of the MEC,
with statistical significance (po0.05) at 1 mg/ml (10.672%) and at
10 mg/ml (10.171.9%). Upon treatment with prednisolone, prolifera-
tion declined apparently but non-significantly (p¼0.109) already at
0.2 mg/ml (19.672.2%), and with 11.276.0% reaching a minimal value
of Ki67-positive cells at 200 mg/ml (Fig. 2B).

Immunosuppressive drugs affect hNPCs metabolic activity

The effect of various immunosuppressants on hNPC metabolic
activity was demonstrated using the MTT test. Similar to the BrdU
assay, the metabolic rates of treated groups were calculated relative
to the untreated group, which was set at 100%. After incubation of
hNPCs with CsA for up to 72 h under common culture conditions,
cells' metabolic activity significantly changed in comparison to
untreated cells (po0.001). At the MEC of 0.03 mg/ml CsA, the cells
already demonstrated a prominent elevation of metabolic activity,
by 25.177.6% in comparison to control (Fig. 3). Under higher
concentrations of CsA (0.3–10 mg/ml), a similar induction of meta-
bolic activity was observed. In contrast, at 30 mg/ml CsA, a
significant decrease of metabolic activity (to 51.6710.8%) was
revealed (Fig. 3). Treatment with the immunosuppressant ever-
olimus was overall associated with a decrease of metabolic activity
(po0.001). A similar reduction of metabolic rate was observed in
hNPC cultures treated with 1 ng/ml–1 mg/ml, a concentration 100
times of the MEC, exhibiting 79.672.6% of the metabolic activity of
the control (Fig. 3). Human NPCs in expansion treated with
mycophenolate at sub-therapeutic concentrations (0.1 mg/ml)
showed an increase of metabolic activity to 120.6%74.0%, return-
ing to approximately normal values at the MEC of 1 mg/ml–10 mg/
ml (Fig. 3). In hNPC cultures treated with 30 mg/ml MPA, meta-
bolic activity significantly decreased to 76.80%73.8%, being very
similar at 100 mg/ml MPA (Fig. 3). Prednisolone induced a slight
decrease in metabolic activity at lower concentrations (0.02 and
0.2 mg/ml), followed by a minor increase in metabolism with 2
and 20 mg/ml. At the highest dose, 200 mg/ml, prednisolone
demonstrated a metabolic activity equal to control (Fig. 3). One-
way ANOVA revealed that the differences in the mean values
among the treatment groups were insufficient to exclude the
possibility that the difference is due to random sampling varia-
bility. Thus, there was no statistically significant difference in
metabolic rate after treatment of hNPCs with prednisolone
(p¼0.126).

Immunosuppressive drugs affect hNPCs differentiation

Human fetal neuroprogenitor cells were maintained without
growth factors to initiate their differentiation. After 8–10 days
various immunosuppressants were added to pre-differentiated
NPCs cultures and incubated for additional 72 h. Afterwards,

Fig. 3 – Immunosuppressants influence hNPCs'’ metabolic
activity. Human NPCs were incubated in expansion medium or
medium with various concentrations of immunosuppressants
for 72 h before the MTT reduction assay was performed. Bars
represent means of five repeats each of 20,000 cells per well in
a 96-well plate (7SEM). MTT reduction as an indicator of
changed metabolic activity was expressed as a percentage of
the untreated control. Arrowheads highlight minimum
effective concentration (MEC). (np¼significant after Holm–

Bonferroni correction, po0.05–0.01 when compared to
untreated control, n¼3).
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Similar class of drugs affect hNPC proliferation and influence metabolic activity
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Evaluation of lead target in cell-based assays and mouse models

Model Validation Assays

• Causal network analysis with compound 
inhibition and/or ASO knockdown

• PK study with 2-3 tool compounds 
focusing on in vivo brain penetration 
with free fraction of molecules

Cell-based Assays for 
CAG Somatic Expansion

• Various specific cell-based assays such 
as tetranucleotide expansion / 
contraction assay, CAG repeat cell lines, 
and HD iPSC-programmed striatal cells 

• Develop HD-patient iPSC derived 
striatal cell line

IPSC-derived HD Neural Stem Cells

HD Mouse Models

HdhQ111

Knock-In Mice
Q175 

Knock-In Mice

• Two mouse models resembling HD 
phenotype (motor deficit, pathology, 
etc.) and genotype with CAG repeats
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The cause is not always the cure. Despite being defined by a single gene mutation, rare 
diseases often do not lend themselves to simple intervention

Advances in multi-omics, supercomputing, and causal AI have allowed us to begin to 
unravel the hidden mechanisms of rare diseases by creating Gemini Digital Twins

This enables us to conduct in silico experiments to discover the true drivers of 
clinical outcomes

We have used it to discover a novel drug target and we are advancing a small 
molecule against the novel target towards the clinic

The discovery of novel therapies through the use of Digital Twins
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Gemini Digital Twins are driving the creation of the next generation of 
breakthrough drugs for rare diseases

Human multi-omic 
datasets

Causal AI Platform 
(REFS)

Therapeutics against 
novel human biology, 
de-risked with causal 
human mechanisms
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aitiabio.com

We are committed to using AI to bring life-
changing therapies to improve patient lives 

Thank You!


