

The Evolution of Human Intelligence

What it Teaches Us and Why it Matters

Max S. Bennett

Al platform used by 25% of the largest brands in US, including **Nike**, **Under Armour**, and **CVS**.

A.I.

Brain

Wonderful supporters, thought partners, mentors:

Joseph LeDoux, New York University

Karl Friston, University College London

Dileep George, DeepMind

Jeff Hawkins, Numenta

David Redish, University of Minnesota

Eva Jablonka, Tel Aviv University

Kent Berridge, University of Michigan

..and more..

The goal: Understanding how the brain "works"

Marr's 3 levels of analysis

Marr's Level	Definition	Neuroscience example
Computation	The function/goal of the system	Cognition, memory, planning,
Algorithm	The abstract mathematical operations being performed	Predictive coding, active inference,
Implementation	Physical implementation of the algorithm	Neurons, synapses, neuromodulators,

Why does understanding the brain matter to AI?

Reason #1: AI still performs badly in important ways

Reason #2: AI costs too much energy

Reason #3: understanding our relationship to other intelligences

The current paradigm: Functional Decomposition

Computation	Two challenges with this approach:	ions:
	1. Functions are distributed	
Cogn	a. Language (neocortex, maramus, basar gangna)	ortex
Perce	b. Visual object recognition (distributed in SC, dual neocortical streams, amygdala)	rtex
Decision	c. Decision making (some decisions in frontal cortex, others striatum, others SC, etc.)	npus
Plan	1. Regions do multiple functions <i>Examples:</i> a	ala
Mer	a. Motor-sensory signals are overlapping in many neocortical regions	em
Motor	b. Dopamine is both a learning signal and a	um
"The error	a ata dina ana ing dia trucana ang dia iting ang ang tiang a	

"The expected mapping between cognitive operations and neural regions has not come to pass"

- Michael Anderson (Anderson, Kinnison, & Pessoa, 2013, as quoted in Cisek 2024)

Focusing on algorithms over functions can help (a bit)...

Neocortical microcircuit? - predictive coding? Generative models? Auto-association?

Neocortical-thalamic circuit - blackboard? Relay?

Basal ganglia - actor-critic system?

Cerebellum - Adaptive filter?

Hippocampus - pattern separation & completion?

but...

Directly reverse engineering these algorithms is hard. Our technological tools are currently limited

An underutilized tool we need in our toolbox: evolution

It is unfortunately not *this* simple: (MacLean's Triune Brain)

Based on up-to-date evolutionary neurobiology & comparative psychology + based in a modern understanding of algorithms in A.I

1. Evolutionary story is wrong

- a. Brain did not evolve solely through adding "layers"
- b. Reptiles have "limbic" areas
- 2. Same problems as functional decomposition
 - a. "Emotion" occurs in nonlimbic neocortical areas
 - b. "Cognition" occurs in limbic areas
- 3. Not grounded in comparative psychology
 - a. 'Early' diverging mammals show evidence of 'cognition'
- 4. No insight on marr's level 2 (not grounded in A.I. research)

Milestone	Key Neurobiological modifications	Our Evolutionary Lineage			
Early Eumetazoans	Neurons				
Early Bilaterians	Valence neurons bilateralism first "brain"				
Early Chordates	Proto-Hypothalamus + spinal cord	First Animals			
Early Vertebrates	Vertebrate brain template (forebrain, midbrain, hindbrain) Basal ganglia Cortex (pallial amygdala, hippocampus, olfactory cortex)	First			
Early Jawed Vertebrates	Cerebellum	Bilaterians			
Early Amniotes	Dorsal pallium	First			
Early Mammals	Neocortex emerges from dorsal pallium	Vertebrates First Primates			
Early Placental mammals	Motor cortex				
Early Primates	Granular prefrontal cortex STS/TPJ Direct motor cortex connections				
Early Humans	But what were the adaptive bene	efits of these modifications?			
What new intellectual capacities did each of these modifications enable?					
	What algorithms were being implemented?				

A methodology for inferring emergence of intellectual faculties

• **In-Group Condition**: Diverse groups of early diverging species across group *Y* contain ability *A*, implemented in homologous neural mechanisms.

AND

- **Out-Group Condition**: Evidence is supportive of one of the following two claims:
 - (a) descendants of earlier diverging phylogenetic group *X* outside of group *Y* do not contain ability *A*
 - OR (b) ability *A* is implemented in nonhomologous neural mechanisms in earlier diverging group *X* outside of *Y* AND
- **Stem-Group Condition**: Ability *A* would have been adaptive within the purported ecological niche of early members of group *Y*

<u>Reference:</u> Bennett MS (2021) What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front. Psychol. 12:685853. doi: 10.3389/fpsyg.2021.685853

Example - allocentric spatial mapping

Example - allocentric spatial mapping

Animal common ancestor

Parsimonious conclusion:

ability to remember allocentric locations in space emerged in early vertebrates

Important caveat: We are specifically tracing the human lineage

Saying "in our lineage, spatial mapping evolved with early vertebrates"

is not the same as saying

"<u>only</u> vertebrates have spatial mapping"

We then get a first approximation of our story:

Milestone	Neurobiological modifications ("implementation")	Behavioral abilities ("computation")	
Early bilaterians	Valence neurons Bilateralism First brain	Valence (~reward) Associative learning Affective states	
Early vertebrates	Vertebrate brain template (forebrain, midbrain, hindbrain) Basal ganglia	Interval Timing Pattern recognition Trial and error learning Spatial mapping	
Early mammals	Neocortex emerges from dorsal cortex	Vicarious Trial & Error Counterfactual learning Episodic Memory	
Early primates	Granular prefrontal cortex STS/TPJ Direct motor cortex connections	Theory of mind Imitation learning Anticipating future needs	
Early humans Frontal pole? Unique projection from motor cortex to larynx		<mark>Language</mark> Beat-based timing	

Legend

- Strong evidence
- Good evidence (not conclusive)
- Preliminary evidence (still controversial)

Reference: Bennett MS (2021) What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front. Psychol. 12:685853. doi: 10.3389/fpsyg.2021.685853

We then get a first approximation of our story:

Milestone	Neurobiological modifications ("implementation")	Algorithm	Behavioral abilities ("computation")	
Early bilaterians	Valence neurons Bilateralism First brain	?	Valence (~reward) Associative learning Affective states	
Early vertebrates	Vertebrate brain template (forebrain, midbrain, hindbrain) Basal ganglia	?	Interval Timing Pattern recognition Trial and error learning Spatial mapping	
Early mammals	Neocortex emerges from dorsal cortex	?	Vicarious Trial & Error Counterfactual learning Episodic Memory	-
Early primates	Granular prefrontal cortex STS/TPJ Direct motor cortex connections	?	Theory of mind Imitation learning Anticipating future needs	Legend Strong evidence Good evidence (not conclusive)
Early humans	Frontal pole? Unique projection from motor cortex to larynx	?	Language Beat-based timing	Preliminary evidence (still controversial) <u>Reference:</u> Bennett MS (2021) What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of

Reference: Bennett MS (2021) What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front. Psychol. 12:685853. doi: 10.3389/fpsyg.2021.685853

Let's go back to **~600 million years ago**...

First animals did not have a brain:

Stay in one place. Wait for food

Move around to find food.

302 neurons. No eyes. No ears.

How does a nematode find food?

Brilliantly simple algorithm called "taxis navigation":

1. If food smell increases, go forward

1. If food smell decreases, turn randomly

Brilliantly simple algorithm called "taxis navigation":

- 1. If food smell increases, go forward
- 1. If food smell decreases, turn randomly

The brain of nematodes

But it's not so simple...

Gradients are sparse, noisy, and clumpy.

More this

Behavioral states evolve

Serotonin neurons: detect food *inside* nematode

Why a brain?

First animals

Radial symmetry

No "reward"

No behavioral states

No associative learning

No brain

First bilaterians

Bilateral symmetry

"Reward" - categorization of things in the world into good and bad

Behavioral states

Associative learning

Brain

All tools for taxis navigation

The purpose of the first brain was to implement a **taxis algorithm** to enable our ancestors to navigate the seafloor without complex sensory organs.

The First Bilaterians

The First Vertebrates

Your brain 500 million years ago

The brain of the first vertebrates

Lamprey fish
Sensory organs of vertebrates

Sensory processing of vertebrates

Lens shaped eyes

Ears

B

Vestibular system

Olfactory neurons

Taste cells

- Identify objects despite rotations
- Smell pattern recognition
- Spatial memory
- 3D locations
- Interval timing

Fish can..

Learn to swim through mazes for rewards, remember 1 year later

Learn to jump through hoops to get rewards *Learn to find and push buttons to get rewards*

*Nematodes & flatworms can't do any of these

Cortex + basal ganglia enable temporal difference learning algorithm

Dopamine was repurposed from a general average of nearby food, to a precise predicted future reward signal. (TD learning signal)

> *see sten grillner for more great work on vertebrate brain evolution and conserved forebrain systems

The First Bilaterians

The First Vertebrates

Your brain 200 million years ago

Main brain modification was emergence of the **neocortex**

Main brain modification was emergence of the **neocortex**

What was the adaptive value of the neocortex?

Mammals engage in "Vicarious Trial & Error"

Rats imagine possible outcomes before deciding [´]

Johnson & Redish 2007

Mammals engage in "Counterfactual learning"

When choosing to skip OK reward NOW for possibility of GOOD reward, but then finding out there is a long delay, rats regret their choice:

- Rats look back
- Rats re-activate representation of foregone choice in neocortex
- Rats change future choices

Mammals engage in "Episodic memory"

Zhou et. al., 2012

Mammals have uniquely good fine motor skills relative to ancestral amniote

Lizard feet movement do not anticipate obstacles (Kohlsdorf and Navas, 2007; Olberding et al., 2012; Parker and Mc-Brayer, 2016; Tucker and McBrayer, 2012.)

The neocortex enabled "model-based reinforcement learning"

MODEL-FREE REINFORCEMENT LEARNING	MODEL-BASED REINFORCEMENT LEARNING
Learns direct associations between a current state and the best actions	Learns a model of how actions affect the world and uses this to simulate different actions before choosing
Faster decisions but less flexible	Slower decisions but more flexible
Emerged in early vertebrates	Emerged in early mammals

"System 1" / "habit"

"System 2" / "Goal-directed"

AlphaGo was a model-based RL system

The First Bilaterians

The First Vertebrates

The First Mammals

The First Primates

Your brain 15 million years ago

Theory of Mind in nonhuman primates

Uniquely powerful imitation learning in primates

K //

Anticipating future needs in nonhuman primates

Can make a decision *now* to satiate thirst in future, even when not yet thirsty

Can't make a decision *now* to satiate thirst in future, if not thirsty yet **Mice hoarding is a genetically hard-coded behavior in response to dropping temperature (not an anticipation of a future need) (Barry, 1976)

Why is mentalizing important for imitation learning?

ALVINN Self Driving Car 1989

30x32 Video

Alternative to direct imitation: **Inverse reinforcement learning**

Photo from: https://towardsdatascience.com/inverse-reinforcementlearning-6453b7cdc90d

Why is mentalizing important for imitation learning?

Learn by directly copying

Self-driving by direct imitation

Learn by first inferring reward function ("inverse reinforcement learning"), then teaching yourself

Self-driving by inverse reinforcement learning

Ng & Abeel 2004

Why is mentalizing important for anticipating future needs?

Common algorithm for theory of mind and future need anticipation first proposed by Suddendorf and Corballis, 1997

The First Bilaterians

The First Vertebrates

The First Mammals

The First Primates

The First Humans

Language *is not* just scaled up primate communication.

There is no unique brain region for language.

A unique learning program for language...

Joint attention

Turn taking (i.e. proto conversations)

c1

c3

Mundy & Newell, 2007

"Please maximize production of paperclips"

All together: and we get a first approximation of our story:

Milestone	Neurobiological modifications ("implementation")	Algorithm category	Behavioral abilities ("computation")
Early bilaterians	neuromodulators for bilateralism first brain	Taxis navigation ("Steering")	Valence (~reward) Associative learning Affective states
Early vertebrates	Vertebrate brain template (forebrain, midbrain, hindbrain) Basal ganglia	Temporal difference learning ("model-free reinforcement learning")	Trial and error learning Pattern recognition Interval Timing Spatial mapping
Early mammals	Neocortex emerges from dorsal cortex	Generative model ("simulation")	Vicarious Trial & Error Counterfactual learning Episodic Memory
Early primates	Granular prefrontal cortex STS/TPJ Direct motor cortex connections	Second order generative model ("mentalizing")	Theory of mind Imitation learning Anticipating future needs
Early humans	Frontal pole? Unique projection from motor cortex to larynx	Set of instincts for language learning	Language Beat-based timing

The five breakthroughs - a first approximation of brain evolution

The AI theme on "more data=more performance" can be seen in evolution

The Evolution of Progressively More Complex Sources of Learning

	REINFORCING IN EARLY VERTEBRATES	SIMULATING IN EARLY MAMMALS	MENTALIZING IN EARLY PRIMATES	SPEAKING IN EARLY HUMANS
SOURCE OF LEARNING	Learning from your own actual actions	Learning from your own imagined actions	Learning from others' actual actions	Learning from others' imagined actions
WHO LEARNING FROM?	Yourself	Yourself	Others	Others
ACTION LEARNING FROM?	Actual actions	Imagined actions	Actual actions	Imagined actions

Key idea

Many disparate intellectual skills seemed to from common algorithmic "breakthroughs" that built on top of on prior algorithmic breakthroughs

How does this tool help us?

- 1. Helps interpret brain as a whole, instead of through functional divisions (I.e. "what ability did *adding* a neocortex enable" vs "what does the neocortex do")
- 1. Adds constraints on our interpretations of the 'functions' of various modifications (e.g. helps us see that the motor cortex evolved for motor planning, not motor control)
- 1. Narrows classes of "algorithms" to evaluate (e.g. Algorithms for simulation likely underlie neocortical machinery, algorithms for mentalizing likely underlie new primate regions)
- 1. Helps explain multi-purpose neurobiological features (e.g. dopamine was repurposed for many different things over evolutionary time)

maxbennett@gmail.com

www.abrief history of intelligence.com